Math 130 Precalculus Fall14, FINAL b

Name: Solutions

- No notes
- Cellphones must be switched OFF.
- You MUST EXPLAIN your answers and MUST show all your work

1	12	
2	8	
3	8	
4	8	
5	8	
6	8	
7	8	
8	8	
9	8	
10	8	
11	8	
12	8	
	100	

(1) (12 points) Consider the function

$$f(x) = \frac{x-4}{x-2}$$

(a) (2 points) Find the maximal domain for this function.

(b) (2 points) Find the x- and y-intercepts.

y-interept: f(v) = 2x-interept: solve f(x) = 0 x= 4

(c) (2 points) Examine how the function behaves when $x \to \pm \infty$

 $\frac{\chi-4}{\chi-2} \sim \frac{\chi}{\chi} = 1$

(d) (2 points) Find equations of all the vertical asymptotes (if any).

71=2

(e) (4 points) Based on all this information, sketch the graph of this function and find its range.

(2) (8 points) Consider the function

4

$$f(x) = \begin{cases} \cos x & x > 0\\ -x - 1 & x \le 0 \end{cases}$$

(a) (2 points) Find the values of f(0), $f(-\pi)$ and $f(\pi)$.

$$f(0) = -1$$
 $f(-\pi) = \pi - 1$
 $f(\pi) = \omega s(\pi) = -1$

(b) (2 points) Sketch the graph of the function f, indicating the x- and y-intercepts.

(c) (2 points) What is the range of the function f?

(d) (2 points) Is this function 1-1? (Justify your answer)

- (3) (8 points) A quadratic function is given $f(x) = 2x^2 3x + 1$.
 - (a) (2 points) Express the quadratic function in the standard form $f(x) = a(x-h)^2 + k$

$$2\left(x^{2} - \frac{3}{2}x + \frac{1}{2}\right)$$

$$2\left(\left(x - \frac{3}{4}\right)^{2} - \frac{9}{16} + \frac{1}{2}\right) = 2\left(x - \frac{3}{4}\right)^{2} - \frac{9}{8} + 1$$

$$2\left(x^{2} - \frac{3}{2}x + \frac{9}{16} - \frac{9}{16} + \frac{1}{2}\right)$$

$$2\left(x - \frac{3}{4}\right)^{2} - \frac{1}{8}$$

(b) (2 points) Find the coordinates of the minimum point on the graph.

$$\left(\frac{3}{4}, -\frac{1}{8}\right)$$

(c) (2 points) Find the x-intercepts

(2 points) Find the x-intercepts
$$(2x - 1)(x - 1)$$

$$x = \frac{1}{2}, x = 1$$

$$x = \frac{1}{2}, x = 1$$

(d) (2 pt) Sketch the graph of f.

(4) (8 points) A farmer has 160 feet of fencing, and wishes to build three fences to create a rectangular fields with one boundary by a river, as illustrated below.

(a) (2 points) Let x be the length of the fence perpendicular to the river. Write down a formula for the total area A(x) of the field in terms of x.

$$A(x) = x (160 - 2x)$$

$$= -2x^{2} + 160x$$

(b) (6 points) How should the farmer choose the value of x in order to maximize the total area A(x)?

$$A(\pi) = -2(\chi^2 - 80\chi)$$

$$= -2((\chi - 40)^2 - 1600)$$

$$= -2((\chi^2 - 80\chi + 1600) - 1600)$$

$$= -2((\chi - 40)^2 + 3200)$$
Chave $\chi = 40$.

- (5) (8 points) Consider the polynomial $P(x) = x^6 2x^4 8x^2$.
- (a) (6 points) Find all zeros (real and complex) of the polynomial P(x).

$$\chi^{2} (x^{4} - 2x^{2} - 8)$$

$$\chi^{2} (x^{2} - 4)(x^{2} + 2)$$

$$\chi = 0 \quad \chi = \pm 2 \quad \chi = \pm \sqrt{2}i$$

(b) (2 points) Write P(x) as a product of linear polynomials.

- (6) (8 points) You put \$600 in a bank account with 12% interest per year.
- (a) (2 points) If the interest is compounded **monthly**, how much will you have after 1 month?

$$A(\frac{1}{12}) = 600 \left(1 + \frac{0.12}{12}\right) = 606$$

(b) (2 points) If the interest is compounded **continuously**, how much will you have after 12 months?

(c) (4 points) If the interest is compounded **continuously**, how long will it take for you to have \$1000?

$$600e^{0.11t} = 1000$$
 $e^{0.11t} = \frac{1000}{600} = \frac{5}{3}$
 $t = \ln(\frac{5}{3}) \approx 4.26 \text{ years}$

- (7) (8 points) Solve the following equations
 - (a) (4 points) $e^{2x} e^x 6 = 0$

$$\left(e^{x}-3\right)\left(e^{x}+2\right)=0$$

$$e^{x}=3$$
 $e^{x}=-2$

(b) (4 points) $\log_4(x+5) - \log_4(x-1) = 2$

$$\frac{345}{3-1} = 4 = 16$$

$$\chi = \frac{21}{15} = \frac{7}{5}$$

(8) (8 points) Let θ be an angle with $\cot \theta = -5$, and with the terminal point of θ in the fourth quadrant. Calculate exact values of all six trigonometric functions of θ .

$$G = -5 \qquad \text{tau0} = -\frac{1}{5}$$

$$\omega \theta = \frac{5}{\sqrt{26}}$$
 $\omega \theta = \frac{\sqrt{12}}{5}$

(9) (8 points) Find the exact values of

(a)
$$\sin^{-1}(\sin(16\pi/5))$$
 $\frac{16\pi}{5} = 3\pi + \frac{\pi}{5}$ so $\sin\left(\frac{16\pi}{5}\right) = \sin\left(\frac{6\pi}{5}\right)$

(b) $\tan(\sin^{-1}(2/5))$

$$\frac{5}{\sqrt{21-4'}}$$

$$= \sqrt{21'}$$

(10) (8 points) Find the exact value of $\sin(\pi/12)$. You may use the facts that

$$\sin(\pi/4) = \frac{\sqrt{2}}{2}$$
 and $\sin(\pi/3) = \frac{\sqrt{3}}{2}$

$$\frac{11}{4} = \frac{3\pi}{12}$$
 $\frac{11}{3} = \frac{4\pi}{12}$ $\frac{1}{12} = \frac{4\pi}{12} - \frac{3\pi}{12}$

$$\frac{1}{12} = \frac{471}{12} - \frac{371}{12}$$

$$\sin\left(\frac{\pi}{12}\right) = \sin\left(\frac{4\pi}{12} - \frac{3\pi}{12}\right)$$

$$= \sin\left(\frac{4\pi}{12}\right) \cos\left(\frac{3\pi}{12}\right) - \cos\left(\frac{4\pi}{12}\right) \sin\left(\frac{3\pi}{12}\right)$$

$$= \sin\left(\frac{\pi}{12}\right) \cos\left(\frac{\pi}{12}\right) - \cos\left(\frac{\pi}{12}\right) \sin\left(\frac{\pi}{12}\right)$$

$$= \sin\left(\frac{\pi}{3}\right) \cos\left(\frac{\pi}{4}\right) - \cos\left(\frac{\pi}{3}\right) \sin\left(\frac{\pi}{4}\right)$$

$$= \frac{3\pi}{12} - \frac{1}{2} = \frac{12}{2}$$

(11) (8 points) Find all solutions to the equation $2(\sin x)^2 - 3\sin x + 1 = 0.$

$$\chi = \frac{\pi}{6} \cdot \frac{5\pi}{6} + 2\pi n$$

(12) (8 points) Prove the following identity $\sec \theta \sin^2 \theta = \sec \theta - \cos \theta.$

$$\frac{1}{(050)}\left(1-\cos^2\theta\right) = \frac{1}{(050)} - \cos\theta$$

$$= \sec\theta - \cos\theta$$