Math 130 Precalculus Fall14, FINAL a

Name:	Solutions	
Ministral pide	wit proceed forces on add b	apply television (1), to

- No notes
- Cellphones must be switched OFF.
- You MUST EXPLAIN your answers and MUST show all your work

1	12	
2	8	
3	8	
4	8	
5	8	O
6	8	
7	8	
8	8	
9	8	all w
10	8	
11	8	
12	8	
	100	

(1) (12 points) Consider the function

$$f(x) = \frac{x-3}{x-2}$$

function

(a) (2 points) Find the maximal domain for this formula

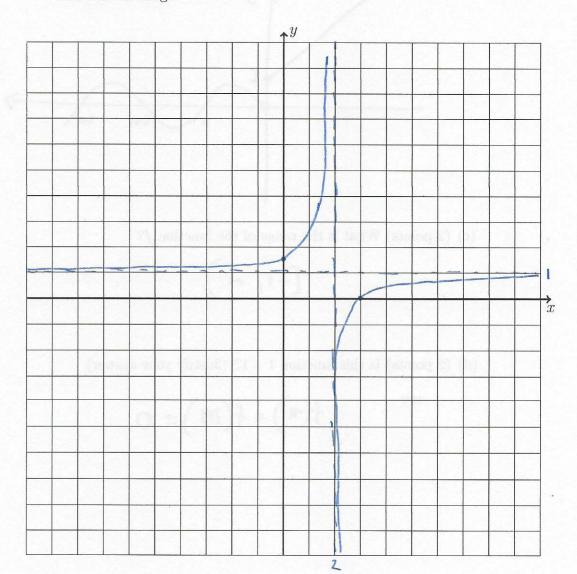
$$\chi \neq 2$$
 $(-\infty, 2) \cup (2, \infty)$

(b) (2 points) Find the x- and y-intercepts.

y-interest:
$$f(a) = \frac{3}{2}$$

y-interept:
$$f(a) = \frac{3}{2}$$

x-interepts! solve $f(x) = 0$ $x = 3$.

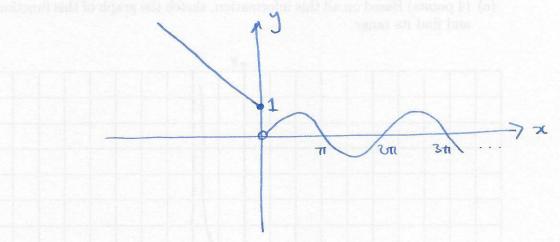

(c) (2 points) Examine how the function behaves when $x \to \pm \infty$

$$\frac{\chi-3}{\chi-2} \sim \frac{\chi}{\chi} = 1.$$

(d) (2 points) Find equations of all the vertical asymptotes (if any).

$$x = 2$$

(e) (4 points) Based on all this information, sketch the graph of this function and find its range.


(2) (8 points) Consider the function

$$f(x) = \begin{cases} \sin x & x > 0\\ -x+1 & x \le 0 \end{cases}$$

(a) (2 points) Find the values of f(0), $f(-\pi)$ and $f(\pi)$.

$$f(c) = 1$$
 $f(-\pi) = \pi + 1$ $f(\pi) = \sin(\pi) = 0$

(b) (2 points) Sketch the graph of the function f, indicating the x- and y-intercepts.

(c) (2 points) What is the range of the function f?

(d) (2 points) Is this function 1-1? (Justify your answer)

$$f(\pi) = f(2\pi) = 0$$

- (3) (8 points) A quadratic function is given $f(x) = 2x^2 + x 1$.
 - (a) (2 points) Express the quadratic function in the standard form $f(x) = a(x - h)^2 + k$

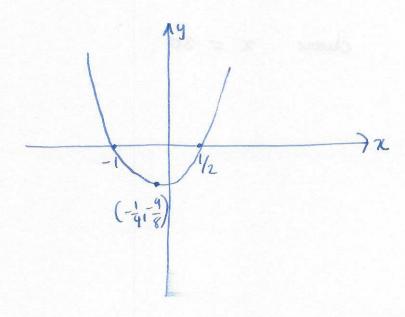
$$2\left(x^{2} + \frac{1}{2}x - \frac{1}{2}\right)$$

$$2\left(\left(x + \frac{1}{4}\right)^{2} - \frac{1}{16} - \frac{1}{2}\right) = 2\left(x + \frac{1}{4}\right)^{2} - \frac{1}{8} - 1$$

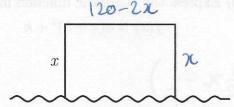
$$2\left(x^{2} + \frac{1}{2}x + \frac{1}{16} - \frac{1}{46} - \frac{1}{2}\right) = 2\left(x + \frac{1}{4}\right)^{2} - \frac{9}{8}$$

minimum

(b) (2 points) Find the coordinates of the maximum point on the graph.


$$(-\frac{1}{4}, -\frac{9}{8})$$

(c) (2 points) Find the x-intercepts
$$(2x - 1)(x + 1)$$


$$x = -1, \frac{1}{2}$$

$$x = -1, \frac{1}{2}$$

(d) (2 pt) Sketch the graph of f.

(4) (8 points) A farmer has 120 feet of fencing, and wishes to build three fences to create a rectangular fields with one boundary by a river, as illustrated below.

(a) (2 points) Let x be the length of the fence perpendicular to the river. Write down a formula for the total area A(x) of the field in terms of x.

$$A(x) = x (120 - 2x)$$
$$= -2x^2 + 120x$$

(b) (6 points) How should the farmer choose the value of x in order to maximize the total area A(x)?

$$A(x) = -2 \left(x^{2} + 60x \right)$$

$$= -2 \left(\left(x + 30 \right)^{2} - 900 \right)$$

$$-2 \left(x^{2} + 60x + 900 - 900 \right)$$

- (5) (8 points) Consider the polynomial $P(x) = x^6 + x^4 12x^2$.
- (a) (6 points) Find all zeros (real and complex) of the polynomial P(x).

$$\chi^{2} \left(\chi^{4} + \chi^{2} - 12 \right)$$

$$\chi^{2} \left(\chi^{2} - 3 \right) \left(\chi^{2} + 4 \right)$$

$$\chi = 0 \qquad \chi = \pm \sqrt{3}. \qquad \chi = \pm 2i$$

(b) (2 points) Write P(x) as a product of linear polynomials.

- (6) (8 points) You put \$400 in a bank account with 12% interest per year.
- (a) (2 points) If the interest is compounded **monthly**, how much will you have after 1 month?

have after 1 month?
$$A\left(\frac{1}{12}\right) = 400\left(1 + \frac{0.12}{12}\right)^{12-12} = 404$$

(b) (2 points) If the interest is compounded **continuously**, how much will you have after 12 months?

(c) (4 points) If the interest is compounded **continuously**, how long will it take for you to have \$1000 ?

$$400 e^{0.12t} = 1000$$

$$e^{0.12t} = \frac{1000}{400} = \frac{5}{2}$$

$$0.12t = \ln(\frac{5}{2})$$

$$t = \ln(\frac{5}{2}) \approx 7.64 \text{ years}$$

(7) (8 points) Solve the following equations

(a) (4 points)
$$e^{2x} + e^x - 6 = 0$$

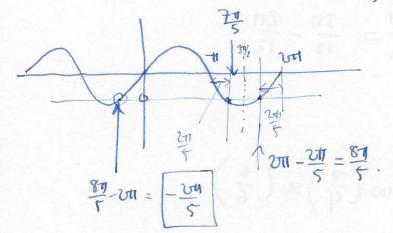
$$\left(e^{x}-2\right)\left(e^{x}+3\right)=0$$

$$e^{x} = 2 \implies x = ln(x)$$
 $e^{x} = -3$ no solution.

(b) (4 points)
$$\log_4(x+6) - \log_4(x-1) = 2$$

$$\frac{246}{20-1} = 4 = 16$$

$$\chi = \frac{22}{15}$$


(8) (8 points) Let θ be an angle with $\cot \theta = -7$, and with the terminal point of θ in the fourth quadrant. Calculate exact values of all six trigonometric functions of θ .

of
$$0 = -7$$
 $\tan 0 = -\frac{1}{7}$

$$\omega x\theta = \frac{7}{\sqrt{50}} \qquad \text{sec } \theta = \frac{\sqrt{50}}{7}$$

(9) (8 points) Find the exact values of

(a)
$$\sin^{-1}(\sin(17\pi/5))$$
 $\frac{171}{5} = 871 + \frac{27}{5}$ so $\sin(\frac{170}{5}) = \pi \ln \frac{71}{5}$.

(b) $\tan(\sin^{-1}(5/6))$

$$tan\theta = \frac{5}{\sqrt{11}}$$

(10) (8 points) Find the exact value of $\sin(\pi/12)$. You may use the facts that

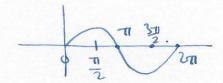
$$\sin(\pi/4) = \frac{\sqrt{2}}{2} \quad \text{and} \quad \sin(\pi/6) = \frac{1}{2}$$

$$\frac{T}{4} = \frac{3t1}{12}$$
 $\frac{T}{6} = \frac{3t1}{12}$ $\frac{2t1}{12}$ $\frac{T}{12} = \frac{3t1}{12} - \frac{2t1}{12}$

$$\frac{11}{12} = \frac{311}{12} - \frac{211}{12}$$

$$\sin\left(\frac{\pi}{12}\right) = \sin\left(\frac{3\pi}{12} - \frac{3\pi}{12}\right)$$

$$= \sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{6}\right) - \cos\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{6}\right)$$


$$= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2}}{2} - \frac{1}{2}$$

(11) (8 points) Find all solutions to the equation $2(\sin x)^2 + \sin x - 1 = 0.$

$$(2\sin x - 1)(\sin x + 1) = 0$$

 $\sin x = \frac{1}{2}$

SIN7C = - |

$$x = \frac{3\pi}{2} + \sqrt{\pi}u$$
.

x= 1/6 + 2 mu.

(12) (8 points) Prove the following identity $\csc \theta \cos^2 \theta = \csc \theta - \sin \theta.$

$$\frac{1}{\sin\theta} \cos^2\theta = \frac{1-\sin^2\theta}{\sin\theta} = \csc\theta - \sin\theta.$$