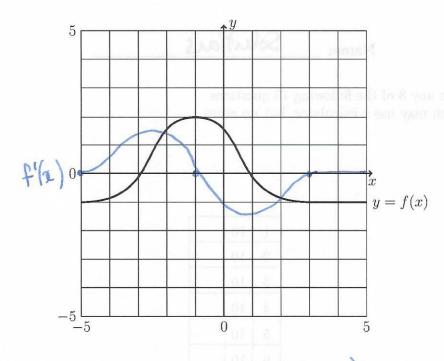
Math 231 Calculus 1 Fall 14 Midterm 3b


Name: Solutions

- Do any 8 of the following 10 questions.
- You may use a calculator, but no notes.

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	N a
8	10	T or
9	10	
10	10	- 10
	80	

Midterm 3	
Overall	

(1) (10 points) Consider the function f(x) defined by the following graph.

(a) Label all regions where f(x) > 0.

(-3,1) (-1,5) (~ (-1,3) acuphille)

- (b) Label all regions where f'(x) < 0.
- (c) What is $\lim_{x\to\infty} f(x)$?
- (d) What is $\lim_{x\to\infty} f'(x)$?
- (e) Sketch a graph of f'(x) on the figure.

(2) (10 points) Consider the function
$$f(x) = \frac{1}{x^2 - x - 2}$$
.

- (a) Find all vertical and horizontal asymptotes of the function.
- (b) Find all critical points of the function.
- (c) Determine the intervals where f(x) is increasing and decreasing.
- a) vertical asymptotes: x=2, x=-1harizantal asymptotes: y=0

b) $f'(x) = -(x^2 - x - z)^2 (2x - 1)$ solve f'(x) = 0 $x = \frac{1}{2}$

increasing: $(-\infty, -1) \cup (-1, \frac{1}{2})$

decreasing: $(1/2,2) \cup (2,\infty)$

- (3) (10 points) Consider the function $f(x) = x \ln(x) 4x$.
 - (a) Find all critical points of the function.
 - (b) Use the second derivative test to attempt to classify them.

$$f'(x) = \ln(x) + x \cdot \frac{1}{x} - 4$$

she
$$f'(x) = 0$$
 $ln(x)$

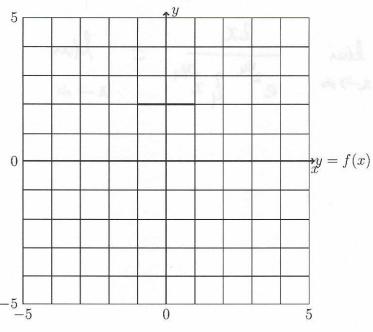
$$ln(x) = 3 \qquad x = e^3$$

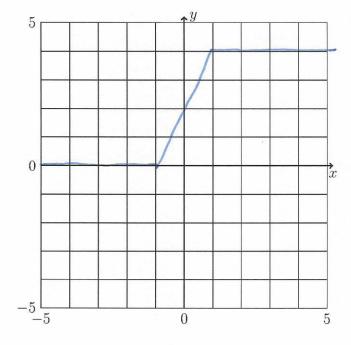
b)
$$f''(x) = \frac{1}{x}$$

(4) (10 points) A hot air balloon is released from the ground a distance of 2km away. When you see the balloon at an angle of $\pi/6$ radians, it is rising at a rate of 0.1 radians/hour. How fast is the balloon rising?

$$\frac{h}{2} = hu \theta$$

$$\operatorname{col}\left(\frac{1}{6}\right) = \frac{\sqrt{3}}{2}$$

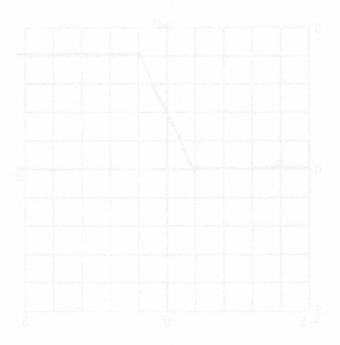

$$\frac{dh}{dt} = 2 \cdot \frac{4}{3} \cdot 0 \cdot 1 = \frac{8}{30} |an| |av|$$


(5) (10 points) Find

$$\lim_{x \to 0} \frac{\ln(x+1) - x}{1 - \cos 2x}$$

$$l'H: \lim_{n\to\infty} \frac{-(x+1)^2 \cdot 1}{4\omega s(4n)} = \frac{-1}{4}$$

(6) (10 points) Sketch the graph of $\int_{-5}^{x} f(t)dt$, where f(x) is shown below.



(7) (10 points) Which function grows faster, x^2 or $e^{\sqrt[4]{x}}$? Justify your answer. (Hint: take a limit.)

9x

 $\lim_{x\to\infty} \frac{x^2}{2^{1/4}} = \lim_{x\to\infty} \frac{1}{x\to\infty}$

2x		Lin
ezila j	3/4	1×-1 2

(8) (10 points) Find the indefinite integral

$$\int 3\cos(x) - 2e^x \ dx.$$

和 = トナきーマリームト

(9) (10 points) Evaluate the definite integral

$$\int_1^9 \frac{x-2}{\sqrt{x}} \ dx.$$

$$\int_{1}^{9} x^{1/2} - 2x^{1/2} dx = \left[\frac{2}{3}x^{3/2} - 4x^{1/2} \right]_{1}^{9}$$

$$= \frac{2}{3}27 - 4.3 - \left(\frac{2}{3} - 4 \right).$$

$$= 18 - 12 - \frac{2}{3} + 4 = 9\frac{1}{2}$$

(10) Find the area under the graph $y = 2x^3 + 1$ between x = 0 and x = 1.

$$\int_{0}^{1} 2x^{2} + 1 \, dx = \begin{bmatrix} \frac{1}{2}x^{4} + x \end{bmatrix}_{0}^{1}$$

$$= \frac{1}{2} + 1 = \frac{1}{2} = \frac{3}{2}.$$