Math 231 Calculus 1 Fall 14 Midterm 1b

	C 1 L'	
Name:	Solutions	

- I will count your best 8 of the following 10 questions.
- You may use a calculator, but no notes.

. *				
	1	10		
	2	10	4	
	3	10		
	4	10		
	5	10		
	6	10		
	7	10		
	8	10		
	9	10		
	10	10		
		80		

Midterm 1	
Overall	

(1) (10 points) Plot the points (-1,3) and (4,-1) on the grid below, and draw the straight line through the two points. Find the equation of the straight line.

(2) (10 points) The graph of y = f(x) is shown below. Evaluate each limit, or write DNE if the limit does not exist. No justifications are necessary.

- (a) $\lim_{x\to 3} f(x)$
- **4** –
- (b) $\lim_{x\to -2-} f(x)$
- (c) $\lim_{x\to -2+} f(x)$
- (d) $\lim_{x\to -2} f(x)$
- (e) $\lim_{x \to 1+} f(x)$
- (f) $\lim_{x\to 1} f(x)$ **TNE**

- (3) (10 points) Sketch the graph of $f(x) = \cos(x/2)$.
 - (a) What is the average rate of change from $x = -\pi$ to x = 0?
 - (b) Looking at the graph, do you expect this to be bigger or smaller than the actual rate of change at $x = -\pi$?

a) average rate of change
$$\cos(0) - \cos(\frac{-\pi}{2}) = \frac{1-0}{\pi} = \frac{1}{1}$$

b) away rate of change smaller than actual rate of change at x=-TT.

345 (c) time-1 f(x)

(4) (10 points) Evaluate the limit algebraically. For an infinite limit, write $+\infty$ or $-\infty$. If a limit does not exist (DNE), you must justify why this is the case.

$$\lim_{x \to 0} \frac{\sin 2x}{-5x}$$

$$2\chi = \Theta$$

$$\lim_{Q \to 0} \frac{\sin Q}{-5(\%)} = -\frac{2}{5} \lim_{Q \to 0} \frac{\sin Q}{Q} = -\frac{2}{5}$$

(5) (10 points) Evaluate the limit algebraically. For an infinite limit, write $+\infty$ or $-\infty$. If a limit does not exist (DNE), you must justify why this is the case.

$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2}$$

$$\lim_{x\to 2} \frac{(x-2)(x+3)}{x+3} = \lim_{x\to 2} x+3 = 5$$

(6) (10 points) Evaluate the limit algebraically. For an infinite limit, write $+\infty$ or $-\infty$. If a limit does not exist (DNE), you must justify why this is the case.

$$\lim_{x \to 3} \frac{x-3}{x - \sqrt{x+6}}$$

$$\lim_{x \to 3} \frac{(x-3)}{(x-\sqrt{x+6'})} \frac{(x+\sqrt{x+6'})}{(x+\sqrt{x+6'})} = \lim_{x \to 3} \frac{(x-3)(x+\sqrt{x+6'})}{x^2-x-6}$$

$$= \lim_{x \to 3} \frac{(x-3)(x+\sqrt{x+6'})}{(x-3)(x+2)} = \lim_{x \to 3} \frac{x+\sqrt{x+6'}}{x+2} = \frac{3+\sqrt{9}}{5} = \frac{6}{5}$$

(7) (10 points) Use the limit definition of the derivative to differentiate $f(x) = 3x^2 - x$.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{3(x+h)^2 - (x+h) - (3x^2 - x)}{h}$$

=
$$\lim_{h\to 0} \frac{3x^2 + 6xh + h^2 - x - h - 3x^2 + x}{h} = \lim_{h\to 0} 6x + h - 1 = 6x - 1$$

(8) (10 points) Use the limit definition of the derivative to differentiate $f(x) = \frac{1}{1}$

$$f'(x) = \lim_{h \to 0} \frac{f(xth) - f(x)}{h} = \lim_{h \to 0} \frac{3 - (x+h) - 3 - x}{h}$$

$$= \lim_{h \to 0} \frac{(3-x) - (3-x-h)}{h(3-x-h)(3-x)} = \lim_{h \to 0} \frac{h}{h(3-x-h)(3-x)} = \lim_{h \to 0} \frac{h}{h(3-x-h)(3-x)}$$

= (3x)2

(9) (10 points) Find the horizontal asymptotes of
$$f(x) = \frac{\sqrt{x^2 + 2}}{5x - 1}$$
.

$$\lim_{x\to\infty} \frac{\sqrt{x^2+2'}}{5x-1} = \lim_{x\to\infty} \frac{\sqrt{1+2/x^2'}}{5-1/x} = \frac{1}{5}$$

$$\lim_{N\to-\infty} \frac{\sqrt{1+2}}{5n-1} = \lim_{N\to-\infty} \frac{\sqrt{1+2/x^2}}{1/x-5} = -\frac{1}{5}$$

haitental asymptotes:
$$y = \frac{1}{7}$$
. $y = -\frac{1}{5}$.

(10) (10 points) Sketch the graph of a function for which f(1)=2, f is increasing for x<0 and decreasing for x>0, and $\lim_{x\to\infty}f(x)=-2$.

