Math 231 Calculus 1 Fall 14 Final a

Name:	Solutions

- I will count your best 10 of the following 12 questions.
 You may use a calculator, but no notes.

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
	100	

Final	
Overall	

(1) (10 points) Differentiate the following functions. Do not simplify your answers.

$$f(x) = \frac{2}{x} - \frac{3x}{\sqrt{x}} + 4\tan x - 5e^{\pi}$$

$$f(x) = 2x^{2} - 3x^{2} + 4\tan x - 5e^{\pi}$$

$$f'(x) = -2x^{2} - \frac{3}{2}x^{2} + 4\cot^{2}x$$

(b)
$$f(x) = \frac{x^3 - 1}{x^3 + 1}$$

$$f'(x) = \frac{(x^3 + 1)(3x^2) - (x^3 - 1)(3x^2)}{(x^3 + 1)^2}.$$

$$= \frac{6x^2}{(x^3 + 1)^2}$$

(2) (10 points) Differentiate the following functions. Do not simplify your answers.

(a)
$$f(x) = \cos(e^x)$$

$$f'(x) = -\sin(e^x) \cdot e^x$$

(b)
$$f(x) = \sqrt{x^2 - 2 \ln x} = (x^2 - 2 \ln x)$$

 $f'(x) = \frac{1}{2} (x^2 - 2 \ln x) \cdot (2x - \frac{2}{x})$

(3) (10 points) Evaluate the following integrals.

(a)
$$\int \sqrt{x} + 3x^2 + \frac{5}{x} - 4 \ dx$$

$$= \frac{2\chi^{3/2}}{3} + \chi^{3} + 5 \ln(\kappa) - 4\chi + C$$

(b)
$$\int_{0}^{\pi/6} \sin 3x \, dx$$

$$\left[-\frac{1}{3} \cos 3x \right]_{0}^{\pi/6} = -\frac{1}{3} \left(\cos \left(\frac{\pi}{2} \right) - \cos \left(0 \right) \right)$$

$$= -\frac{1}{3} \left(0 - 1 \right) = \frac{1}{3}$$

(4) (10 points) Evaluate the following integrals.

(a)
$$\int_0^2 e^{x^4} x^3 dx$$

$$\left[\frac{1}{4}e^{x^4}\right]_0^2 = \frac{1}{4}\left(e^{16}-1\right)$$

(b) If
$$\int_0^8 f(x) dx = 20$$
 and $\int_6^8 f(x) dx = 8$, find $\int_0^6 f(x) dx$.

- (5) (10 points) Note: the possible answers for limits are a number, $+\infty$, $-\infty$ or "does not exist" (DNE). Justify your answers.
 - (a) Find $\lim_{x\to 3} \frac{x^2 5x + 6}{x^2 9}$.

$$\mu_{H}:=\lim_{x\to 3}\frac{2x-5}{2x}=\frac{1}{6}$$

(b) Find $\lim_{x\to 0} \frac{\sin 3x}{x}$.

$$2^{1}H: = \lim_{n\to\infty} \frac{\cos 3n \cdot 3}{1} = 3$$

(c) Find $\lim_{x \to +\infty} \frac{x^2 + 5}{e^{2x}}$.

$$l'M:=\lim_{\chi\to+\infty}\frac{2}{4e^{\chi\chi}}=0$$
.

- (6) (10 points) Note: the possible answers for limits are a number, $+\infty$, $-\infty$ or "does not exist" (DNE). Justify your answers. (Hint: one of these questions may require the squeeze theorem.)
 - (a) Find $\lim_{x \to 5} \frac{1}{2} (x-5)^2 \sin(\frac{1}{x-5})$.

Squeeze The:
$$-\frac{1}{2}(n-5)^2 \le \frac{1}{2}(2-5)^2 \sin\left(\frac{1}{2-5}\right) \le \frac{1}{2}(2-5)^2$$

$$\lim_{n \to 5} \frac{1}{2}(n-5)^2 = 0 \implies \lim_{n \to 5} \frac{1}{2}(n-5)^2 \sin\left(\frac{1}{2-5}\right) = 0.$$

(7) (10 points) Use implicit differentiation to find the tangent line to the curve given by the equation $y^2 + x^2y + 2x^3 = 8$ at the point (1, 2).

$$2yy' + 2xy + x^{2}y' + 6x^{2} = 0$$

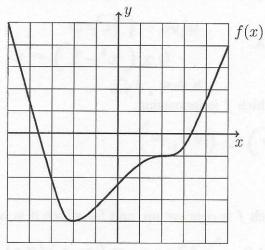
$$4y' + 4 + y' + 6 = 0$$

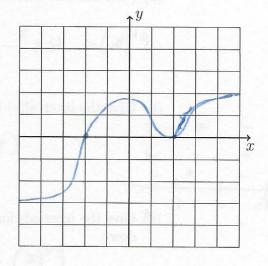
$$5y' + 10 = 0$$

$$y' = -2$$

$$y - 2 = -2(x - 1)$$

(8) (10 points) Consider the function f(x) determined by the graph below.





- (a) List all the critical points of f(x).
- (b) Sketch y = f'(x) on the right hand graph.
- (c) Estimate the intervals where f(x) is concave up.

a)
$$x=-2$$
 $x=2$

a)
$$x=-2$$
 $x = 2$
c) $(-5,0) \cup (3,5)$

- (9) (10 points) Consider $f(x) = x^4 6x^2 1$.
 - (a) Find the derivative of f(x), and find the critical points for f(x).

$$f'(\pi) = 4\pi^3 - 12x$$
 solve: $f'(\pi) = 0$
 $4x(x^2 - 3)$

solve:
$$f'(x)=0$$

 $4x(x^2-3)=0$
 $x=0,\pm\sqrt{3}$.

(b) Give the interval(s) for which f is increasing.

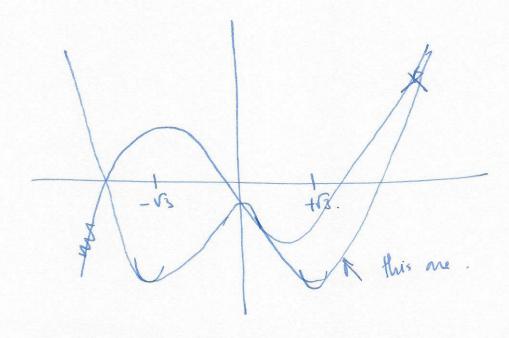
(13,0) U (V3,00)

- f'(x) + -
- (c) Give the intervals for which f is concave up, and for which it is concave down.

$$f''(x) = 12x^{2} - 12 = 12(x-1)(x+1)$$
concave up $(-\infty, 1) \cup (1, \infty)$ concave down $(-1, 1)$

(d) Decide which critical points are maxima, minima, or neither.

(e) Sketch the graph of f(x).



- (10) (10 points) A conical tank has height 6m and radius 3m at the top. Water flows in at a rate of 3.5m³/minute.
 - (a) Give a formula for the rate of increase of the water level in terms of its depth h, that is to say for dh/dt. Show the calculation step by step.
 - (b) How fast is the depth h increasing when the radius reaches 4 meters? Give the numerical value and the unit of measurement.

a)
$$V = \frac{1}{3}\pi r^2 h$$
 $h = 2r \leftrightarrow r = \frac{h}{2}$

$$V = \frac{1}{3}\pi \frac{1}{4}h^3$$

$$dV = \frac{1}{4}\pi h^2 \frac{dh}{dt} = \frac{dh}{dt} = \frac{1}{4}h^3$$

$$\frac{dh}{dt} = \frac{3.5 \times 4}{4\pi h^2}$$

b) at
$$h=4$$
 $\frac{dh}{dt} = \frac{3.5 \times 4}{664.71}$

6)

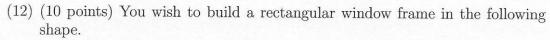
- (11) (10 points) and a base has missing a substance larger A (20)
 - (a) Use linear approximation to estimate $\sqrt{200}$. Hint: use the fact that $14^2 = 196$.
 - (b) Compare your answer with value you obtain from your calculator, and find the absolute and percentage errors.

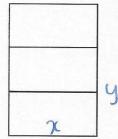
a)
$$f(x) = \sqrt{x}$$
 $f(x+h) \approx f(x) + f'(x) h$
 $f'(x) = \frac{1}{2x^{-1}h}$
 $\sqrt{200} \approx \sqrt{196^{-1}} + \frac{1}{2\sqrt{196}} \cdot (44)$
 $14 + \frac{-4}{2x^{-14}} = 14 + \frac{1}{28} = 124 \cdot 14\frac{1}{28}$

$$\sqrt{200} \simeq 14.14214$$
.

absolute conv $|(\sqrt{200} - 14\frac{1}{28})| = 0.1064213$.

penentage env $0.1064213 \times 100 = 0.7525135\%$.





The total length of the frame should be 40ft. The total length is the perimeter plus the two vertical pieces. Determine the width and height which gives the largest area.

$$4x+2y = 40 \iff 2x+y=20$$
.
 $A = xy = x(20-2x) = 20x-2x^{2}$

$$\frac{dA}{dx} = 20-4x \qquad \text{with all paint solve } A'(x) = 0:$$

$$20-4x = 0 \implies x = 5.$$

$$y = 10.$$