Math 338 Linear Algebra Spring 13 Midterm 34

Name: Sulutions

- Do any 8 of the following 10 questions.
- You may use a calculator without symbolic algebra capabilities, but no notes.

	e i i		1.4			
1	10	3 4	n i			
2	10		100			
3	10	2	(1-)			
4	10					
5	10					
6	10					
7	10					
8	10					
9	10					
10	10					
	80					

Midterm 3	
Overall	

- (1) Let A be the matrix $A = \begin{bmatrix} -3 & -1 \\ 2 & 0 \end{bmatrix}$.
 - (a) Find the eigenvalues of A.
 - (b) What are the eigenvalues for A^k ? Explain your answer.

a)
$$\det(A-\lambda I) = \begin{vmatrix} -3-\lambda & -1 \\ 2 & -\lambda \end{vmatrix} = (3+\lambda)\lambda + 2 = \lambda^2 + 3\lambda + 2$$

= $(\lambda+1)(\lambda+1) \Rightarrow$ eigenvalues are $-2/1$

b) $Av = Av \Rightarrow A^{k}v = A^{k-1}Av = A^{k-1}Av = A^{k-1}v \Rightarrow A^{k}v = A^{k}v$ so A^{k} has eigenvalues $(-2)^{k}$, $(-1)^{k}$.

- (2) Let A be the same matrix as in Q1, i.e. $A = \begin{bmatrix} -3 & -1 \\ 2 & 0 \end{bmatrix}$.
 - (a) Find the eigenvectors for A.
 - (b) Diagonalize A, i.e. find matrices P and D such that $P^{-1}AP = D$.

a) solve
$$(A+2I)x=0$$
: $\begin{bmatrix} -1 & -1 \\ 2 & 2 \end{bmatrix} \Rightarrow x=\begin{bmatrix} 1 \\ -1 \end{bmatrix}$

solve
$$(A+I)x = 0$$
: $\begin{bmatrix} -2-1 \\ 2 \end{bmatrix} \Rightarrow x = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

b)
$$1R^2 \stackrel{\Lambda}{\longrightarrow} 1R^2$$
 $P = \text{matrix of eigenvectors} = \begin{bmatrix} -1 & -2 \\ -1 & -2 \end{bmatrix}$
 $1R^2 \stackrel{\Lambda}{\longrightarrow} 1R^2$ $D = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix}$

check
$$\begin{bmatrix} -2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -3 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 11 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix}$$

(3) Let A be the same matrix as in Q1, i.e. $A = \begin{bmatrix} -3 & -1 \\ 2 & 0 \end{bmatrix}$.

(a) Write down a product of matrices which gives A^k .

(b) Write down a product of matrices which gives e^{At} .

(c) What can you say about e^{At} as $t \to \infty$?

a)
$$A = PDP^{-1} \implies A^{k} = PD^{k}P^{-1} = \begin{bmatrix} 1 & 1 \\ -1-2 \end{bmatrix} \begin{bmatrix} (-2)^{k} & 0 \\ 0 & (-1)^{k} \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1-1 \end{bmatrix}$$

b)
$$e^{At} = Pe^{Dt}P^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}\begin{bmatrix} e^{-2t} & 0 \\ 0 & e^{-t} \end{bmatrix}\begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$$

4

c)
$$\begin{bmatrix} e^{2t} \circ \\ 0 & e^{t} \end{bmatrix} \rightarrow 0$$
 as $t \rightarrow \infty$ $\Rightarrow e^{At} \rightarrow 0$ as $t \rightarrow \infty$.

(4) Let $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ be a basis for \mathbb{R}^3 , where

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}.$$

Use the Gram-Schmidt process to find an orthonormal basis.

$$q_{1} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$q_{2} = \frac{v_{2} - (q_{1}.v_{2})q_{1}}{|1| - |1|} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} - \frac{1}{\sqrt{3}} \cdot 3 \cdot \frac{1}{\sqrt{3}} \begin{bmatrix} -1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$q_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$q'_{3} = v_{3} - (v_{3}.q_{1})q_{1} - (v_{3}.q_{2})q_{2}$$

$$= \begin{bmatrix} 2 \\ 0 \end{bmatrix} - \frac{1}{\sqrt{3}} \cdot 0 \cdot \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \frac{1}{\sqrt{2}} \cdot 2 \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$q_{3} = \frac{1}{\sqrt{6}} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

(5) (a) Suppose A is an $n \times n$ matrix and $A^2 = A$. What can you say about $\det(A)$?

(b) Suppose A is an $n \times n$ matrix and det(A) = 0. What can you say about the eigenvalues of A?

a)
$$\det(A^2) = \det(A)^2 - \det(A) = 0$$

 $\det(A) = 0$
 $\det(A) = 0$
 $\det(A) = 0$

b) det(A) = product of eigenvalues > at least are eigenvalues is teo.

(6) Let B be the basis for \mathbb{R}^2 given by

$$B = \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 1 \end{bmatrix} \right\}.$$

- (a) Find a matrix which converts vectors written in the standard basis to vectors written with respect to the basis B.
- (b) Use your answer to (a) to write $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ (in the standard basis) as a linear combination of vectors in B.

a) Ribudoud
$$\rightarrow$$
 RPB $P = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$

$$P = \begin{bmatrix} 1 & -3 \\ -1 & 2 \end{bmatrix} \leftarrow \text{this matrix converts vectors}$$

$$P = \begin{bmatrix} 1 & -3 \\ -1 & 2 \end{bmatrix} \leftarrow \text{this matrix converts to R}$$
in shandard band to B.

b)
$$-\begin{bmatrix} 1 & -3 \\ -1 & 2 \end{bmatrix}\begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} +5 \\ -3 \end{bmatrix}$$

chech: $5\begin{bmatrix} 2 \\ 1 \end{bmatrix} - 3\begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

(7) (a) Write down a matrix A corresponding to an anticlockwise rotation of $\pi/4$ about the origin in \mathbb{R}^2 .

(b) Write down a matrix B which expands \mathbb{R}^2 by a factor of 2 in the x-direction, and a factor of 3 in the y-direction.

(c) Use your answers above to find a matrix which expands \mathbb{R}^2 by a factor of 2 in the line y = x, and a factor of 3 in the line y = -x.

a) relation by
$$\theta$$
: [$\omega 0 - \sin \theta$] $\omega = \pi |_{\psi}$ [$\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = R$.

b) [$\frac{2}{\sqrt{3}} = E$ = $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} =$

$$\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \frac{1}{2}\begin{bmatrix} 2 & -3 \\ 2 & 3 \end{bmatrix}\begin{bmatrix} 1 \\ -1 & 1 \end{bmatrix}$$

$$= \frac{1}{2}\begin{bmatrix} 5 & -1 \\ -15 \end{bmatrix} = \begin{bmatrix} 5/2 & -1/2 \\ -1/2 & 5/2 \end{bmatrix}$$

(8) Let $A = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}$.

(a) Find the eigenvalues and eigenvectors for A.

(b) Can you diagonalize A? Explain.

a) $det(A-\lambda I) = \begin{vmatrix} -\lambda & -1 \\ 1 & 2\lambda \end{vmatrix} = \begin{vmatrix} \lambda^2 - 2\lambda + 1 = (\lambda - 1)^2 \\ \lambda = 1, 1 \end{vmatrix}$

 $\text{Solve } (A-I)x=0: [-1-1] \Rightarrow \text{ are eigenvector } [\frac{1}{4}]$

b) no. only me eigenvector

(9) Let
$$J = \begin{bmatrix} 0 & x & 0 \\ 0 & 0 & y \\ 0 & 0 & 0 \end{bmatrix}$$
, where x and y may be either 0 or 1.

(a) What are the eigenvalues of A?

(b) What are the largest and smallest number of eigenvectors that A may have?

(c) Suppose $A = PJP^{-1}$, for some invertible matrix P. Show that $A^3 = 0$.

(10) Let A be a matrix with eigenvalues $\lambda_1 = 1, \lambda_2 = -1, \lambda_3 = 2$ and $\lambda_4 = -2,$ and the following orthonormal eigenvectors

$$v_1 = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, v_2 = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ 1 \\ -1 \end{bmatrix}, v_3 = \frac{1}{2} \begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}, v_4 = \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}.$$

(a) Write the vector $b = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ with respect to the basis of eigenvectors. (Hint:

use the fact that the v_i are orthogonal.)

(b) Use your answer above to find Ab with respect to the basis of eigenvectors.

So
$$b = \begin{bmatrix} b \cdot v_1 \\ b \cdot v_2 \\ b \cdot v_3 \\ b \cdot v_4 \end{bmatrix} = \begin{bmatrix} 5 \\ -1 \\ 2 \\ 0 \end{bmatrix}$$