Math 338 Linear Algebra Spring 13 Midterm 3a

Name: S“(‘V‘h b‘AS

e Do any 8 of the following 10 questions.
e You may use a calculator without symbolic algebra capabilities, but no notes.
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(1) Let A be the matrix A = {_02 _13] !

(a) Find the eigenvalues of A.
(b) What are the eigenvalues for A¥? Explain your answer.

2 —
ﬂ) m (A-'?\_L) 2 :;k,';_’p‘\ - ’}\(‘31‘?\\ &9 = K+ AYA¢). = @42) (NI)

'EJ(W '\\:.zl '>\l"-"‘
i k -
D) Av= v > ARy s Ny s AT e gl

e ek G



(2) Let A be the same matrix as in Q1, i.e. A= |:02 13].

(a) Find the eigenvectors for A.
(b) Diagonalize A, i.e. find matrices P and D such that P71 AP = D.

Q) stve (A+2I)x <0 : [’L e @@= [_lz.\

2 =)

QA{L\WL:O : [‘\1;—& T o [,‘l]
L) WAy i o clepeeds - L‘z f\‘l

v Ay 2
mf—‘—)'*?l& {U,&,‘

s [ [ )l - [as]E) T



0 1
-2 =3I
(a) Write down a product of matrices which gives A*.
(b) Write down a product of matrices which gives e®.
(¢) What can you say about e as t — 007
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(3) Let A be the same matrix as in Q1, ie. A= [
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(4) Let S = {vy,va,v3} be a basis for R, where

1 2 2
V) = -1 3 Vo= —1 SN = 2.
1 0 0
Use the Gram-Schmidt process to find an orthonormal basis.
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(5) (a) Suppose A is an n x n matrix and A> = A. What can you say about
det(A)?
(b) Suppose A is an n x n matrix and det(A) = 0. What can you say about
the eigenvalues of A?
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(6) Let B be the basis for R? given by

7=y

(a) Find a matrix which converts vectors written in the standard basis to
vectors written with respect to the basis B.

2] (in the standard basis) as a linear

(b) Use your answer to (a) to write [1

combination of vectors in B.
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(7) (a) Write down a matrix A corresponding to an anticlockwise rotation of
7/4 about the origin in RZ.
(b) Write down a matrix B which expands R? by a factor of 2 in the 2-
direction, and a factor of 3 in the y-direction.
(¢) Use your answers above to find a matrix which expands R? by a factor

of 2 in the line y = z, and a factor of 3 in the line y = —x.
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(8) Let A = [_1 o

(a) Find the eigenvalues and eigenvectors for A.
(b) Can you diagonalize A? Explain.
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(9) Let J = , where x and y may be either 0 or 1.
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(a) What are the eigenvalues of A?

(b) What are the largest and smallest number of eigenvectors that A may
have?

(c) Suppose A = PJP~!, for some invertible matrix P. Show that A® = 0.
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(10) Let A be a matrix with eigenvalues \; = 1, A\ = —1,A3 = 2 and Ay = —2,
and the following orthonormal eigenvectors
1 1 =1 1|
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(a) Write the vector b = with respect to the basis of eigenvectors. (Hint:

3
4

use the fact that the v; are orthogonal.)
(b) Use your answer above to find Ab with respect to the basis of eigenvec-
tors.
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