Math 338 Linear Algebra Spring 13 Final b

Name: 20N S

e Do any 8 of the following 10 questions.
e You may use a calculator without symbolic algebra capabilities, but no notes.
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(1) Find all solutions to the following system of linear equations.
$1+$2—2$3—$4=0
33?1 + 5.’132 G 4$3 -+ 2334 =40
201 — 310 — 33+ 14 =0
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(2) (a) Write down a matrix for a linear transformation of R? which rotates by
7/2 anticlockwise about the origin.
(b) Write down a matrix for a linear transformation of R? which halves
lengths in the z-direction, and doubles lengths in the y-direction.
(¢) Use your answers above to write down a matrix for the linear transfor-
mation of R?“obtained by first halving lengths in the z-direction and
doubling lengths in the y-direction, and then rotating by 7 /2.
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(a) Write down a spanning set in R? which is not a basis.
(b) Write down a basis for R? which is orthogonal, but not orthonormal.

(c) Write down a set of four distinct vectors which span a three-dimensional
subspace of R*.
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(4) Apply the Gram-Schmidt process to the following three vectors.

What do you notice about v3? What does this tell you about the original
three vectors?
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(a) Find the eigenvalues of A.
(b) Find the eigenvectors for A.
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(7) If A is a non-singular n X n matrix such that A=' = —A, what can you
say about the determinant of A? (Hint: there are two cases depending on
whether n is odd or even.)
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(8) Let A be a 4 x 5 matrix such that there are two different vectors x; and z
such that Az, = Az,.
(a) What can you say about the kernel of A7
(b) What can you say about the column rank of A?
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(9) Let B be the basis for R? given by

o=l 14}

(a) Find a matrix which converts vectors written in the standard basis to
vectors written with respect to the basis B.

. i e : .
b) Use your answer to (a) to write in the standard basis) as a linear
1
combination of vectors in B.

(c) Use your answer to (a) to write the matrix [é ﬂ with respect to the

matrix B.
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(10) Let A= [0 4 2|.
0 -2 0
(a) Find the eigenvalues and eigenvectors for A.
(b) Can you diagonalize A7 Explain.
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