Math 338 Linear Algebra Spring 13 Final b

N. T	Solutions	
Name: _	20001 10002	

- Do any 8 of the following 10 questions.
- You may use a calculator without symbolic algebra capabilities, but no notes.

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
	80	

Final	
Overall	

(1) Find all solutions to the following system of linear equations.

$$x_1 + x_2 - 2x_3 - x_4 = 0$$

$$3x_1 + 5x_2 - 4x_3 + 2x_4 = 0$$

$$2x_1 - 3x_2 - 3x_3 + x_4 = 0$$

$$\begin{bmatrix} 1 & 1 & -2 & -1 \\ 3 & 5 & -4 & 2 \\ 2 - 3 & -3 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -2 & -1 \\ 0 & 2 & 2 & 5 \\ 0 & -5 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -2 & -1 \\ 0 & 2 & 2 & 5 \\ 0 & 0 & 6 & 3 \frac{1}{2} \end{bmatrix}$$

$$\chi_4 = t, \quad 6\chi_3 + \frac{31}{2}t = 0 \quad \chi_3 = -\frac{31}{12}t$$

$$2\chi_2 + 2\left(-\frac{31}{12}t\right) + 5t = 0 \quad \chi_2 = \frac{t}{2}\left(\frac{31}{6} - 5\right) = \frac{1}{12}t$$

$$\chi_4 + \frac{1}{12}t - 2\left(-\frac{31}{12}t\right) - t = 0 \quad \chi_4 = t\left(-\frac{1}{12} - \frac{31}{6} + 1\right) = \frac{1}{12}t$$

$$\chi_5 = t \begin{bmatrix} -51 \\ -\frac{31}{12} \\ 12 \end{bmatrix}$$

(2) (a) Write down a matrix for a linear transformation of \mathbb{R}^2 which rotates by $\pi/2$ anticlockwise about the origin.

(b) Write down a matrix for a linear transformation of \mathbb{R}^2 which halves lengths in the x-direction, and doubles lengths in the y-direction.

(c) Use your answers above to write down a matrix for the linear transformation of \mathbb{R}^3 obtained by first halving lengths in the x-direction and doubling lengths in the y-direction, and then rotating by $\pi/2$.

a)
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 $\theta = \frac{\pi}{2}$ $\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
b) $\begin{bmatrix} \frac{1}{2} & 6 \\ 0 & 2 \end{bmatrix}$

$$\begin{bmatrix} 0 & -1 \end{bmatrix} \begin{bmatrix} 1/2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ 1/2 & 0 \end{bmatrix}$$

(3) (a) Write down a spanning set in \mathbb{R}^4 which is not a basis.

(b) Write down a basis for \mathbb{R}^4 which is orthogonal, but not orthonormal.

(c) Write down a set of four distinct vectors which span a three-dimensional subspace of \mathbb{R}^4 .

a)
$$\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0$$

(4) Apply the Gram-Schmidt process to the following three vectors.

$$\mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}.$$

What do you notice about \mathbf{v}_3 ? What does this tell you about the original three vectors?

$$\frac{q_{1}}{q_{2}} = \frac{1}{\sqrt{2}} \begin{bmatrix} 2 \\ 1 \end{bmatrix}
q_{2} = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ -3/2 \\ \frac{3}{2} \end{bmatrix}
q_{2} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ -1 \end{bmatrix}
q_{3} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ -1 \end{bmatrix}
= \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
= > v_{3} lies in span of $\{v_{1}, v_{2}\}$$$

$$A = \begin{bmatrix} -5 & -8 \\ 4 & 7 \end{bmatrix}$$

- (a) Find the eigenvalues of A.
- (b) Find the eigenvectors for A.

a)
$$\begin{vmatrix} -5-\chi & -8 \\ 4 & 7-\lambda \end{vmatrix} = (-5-\chi)(7-\chi) + 32 = \chi^2 - 2\chi - 3$$

= $(\chi - 3)(\chi + 1)$

b)
$$\lambda_1 = 3$$
: $\begin{bmatrix} -8 & -8 \\ 4 & 4 \end{bmatrix}$ $= \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

$$\lambda_2 = -1 \qquad \begin{bmatrix} -4 & -9 \\ 4 & 9 \end{bmatrix} \qquad V_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

(7) If A is a non-singular $n \times n$ matrix such that $A^{-1} = -A$, what can you say about the determinant of A? (Hint: there are two cases depending on whether n is odd or even.)

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

$$\det(-A) = \det(A) \text{ in even}$$

$$-\det(A) \text{ in odd}$$

$$\text{in even}: \frac{1}{d} = d \implies d^2 = 1 \quad d = \pm 1$$

n odd: = -d => d==1 d===1

- (8) Let A be a 4×5 matrix such that there are two different vectors x_1 and x_2 such that $Ax_1 = Ax_2$.
 - (a) What can you say about the kernel of A?
 - (b) What can you say about the column rank of A?

a)
$$24-2n\neq 0$$
 likes in $ke(A)$ so $|\leq d_{inn}(ke(A)) \leq 5$
b) $0 \leq C(A) \leq 4$

(9) Let B be the basis for \mathbb{R}^2 given by

$$B = \left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}.$$

- (a) Find a matrix which converts vectors written in the standard basis to vectors written with respect to the basis B.
- (b) Use your answer to (a) to write $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (in the standard basis) as a linear combination of vectors in B.
- (c) Use your answer to (a) to write the matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ with respect to the matrix B.

a)
$$\begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix}^{-1} = -\frac{1}{3} \begin{bmatrix} -1 & -1 \\ -1 & 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix}$$

b)
$$\frac{1}{3} \begin{bmatrix} 1 \\ 1-2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
 check: $\frac{2}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

c)
$$R_{3} \xrightarrow{\text{Col}} R_{3}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \qquad \downarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 1 & -1 \end{bmatrix}$$

$$R_{B} \longrightarrow R_{B} \qquad 3 \begin{bmatrix} 1 & -2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 4 & -1 \\ 1 & 2 \end{bmatrix}$$

(10) Let
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 2 \\ 0 & -2 & 0 \end{bmatrix}$$
.

- (a) Find the eigenvalues and eigenvectors for A.
- (b) Can you diagonalize A? Explain.

a)
$$\begin{vmatrix} 2-\lambda & 0 & 0 \\ 0 & 4-\lambda & 2 \end{vmatrix} = (2-\lambda) \left[(4-\lambda)(-\lambda) + 4 \right]$$

$$\begin{vmatrix} -2 & -2 & -\lambda \\ -2 & -2 & -\lambda \end{vmatrix} = (2-\lambda) \left(2^2 - 4 + 4 \right) = -(2-\lambda)^3.$$

$$2 = 2 \text{ with multiplicity } 3$$

$$2x_2 + 2t = 0$$
 $x_1 = -t$ $x_1 = S$

No - only the eigenvectors.