Math 233 Calculus 3 Spring 13 Midterm 3b Name: Solutions - Do any 8 of the following 10 questions. - You may use a calculator without symbolic algebra capabilities, but no notes. | 1 | 10 | | |----|----|--| | 2 | 10 | | | 3 | 10 | | | 4 | 10 | | | 5 | 10 | | | 6 | 10 | | | 7 | 10 | | | 8 | 10 | | | 9 | 10 | | | 10 | 10 | | | | 80 | | | Midterm 3 | | |-----------|--| | Overall | | (1) (10 points) Write down limits for the integral over the region in the positive octant below the surface z = 2xy and inside the cylinder $x^2 + y^2 = 1$. $x = r\omega 0$ $y = r\sin 0$ $f = \frac{1}{2} \int_{0}^{\infty} 2r^{2}\omega 0 \sin 0$ $f = \frac{1}{2} \int_{0}^{\infty} r dz d\theta dr$ $f = \frac{1}{2} \int_{0}^{\infty} r dz d\theta dr$ (2) (10 points) Use a triple integral to find the volume of the tetrahedron with vertices (0,0,0), (3,0,0), (0,3,0) and (0,0,3). (90,5) 2-44=3 (3,0,6) $$\int_{0}^{3} \int_{0}^{3-x} \int_{0}^{3-x-y} dz dy dx$$ $$\left[\frac{1}{2}\right]_{0}^{3-x-y} = 3-x-y$$ $$\int_{0}^{3-x-y} \int_{0}^{3-x-y} dy = \left[\frac{3-x}{2}\right]_{0}^{3-x} = \frac{1}{2}\left(\frac{3-x}{2}\right)^{3}$$ $$\int_{0}^{3} \frac{4}{2} - 3x + \frac{1}{2}x^{2} dx = \left[\frac{9}{2}x - \frac{3}{2}x^{2} + \frac{1}{6}x^{3}\right]_{0}^{3}$$ $$= \frac{27}{2} - \frac{17}{2} + \frac{27}{6} = \frac{9}{2}$$ (3) (10 points) Draw a picture of the region described by the limits of the following integral, and write down limits for the region interms of cartesian coordinates. COORdinates. $\int_{0}^{3} \int_{0}^{\pi/2} \int_{0}^{\pi/2} d\theta \, d\phi \, d\rho$ $\frac{1}{2} \int_{0}^{3} \int_{0}^{\pi/2} \int_{0}^{\pi/2} d\theta \, d\phi \, d\rho$ $\frac{1}{2} \int_{0}^{3} \int_{0}^{\pi/2} \int_{0}^{\pi/2} d\theta \, d\phi \, d\rho$ $\frac{1}{2} \int_{0}^{3} \int_{0}^{\pi/2} \int_{0}^{\pi/2} d\theta \, d\phi \, d\rho$ $\frac{1}{2} \int_{0}^{3} \int_{0}^{\pi/2} \int_{0}^{\pi/2} d\theta \, d\phi \, d\rho$ $\frac{1}{2} \int_{0}^{3} \int_{0}^{\pi/2} \int_{0}^{\pi/2} d\theta \, d\phi \, d\rho$ 1 2-3x + 20° dos (4) (10 points) Use the change of variable T(u,v)=(u-uv,uv) to evaluate $\int \int_D \sqrt{x+y} \ dx \ dy,$ $$\int \int_{D} \sqrt{x+y} \ dx \ dy$$ where D is the triangle with vertices (0,0),(0,1) and (1,0). (5) (10 points) Let f(x, y, z) = -x + y + z. Evaluate $\int_C f \, ds$, where C is the portion of the unit circle in the xy-plane which lies in the positive octant, oriented counter-clockwise. $$c(\theta) = (\cos\theta, \sin\theta, 0) \quad 0 \le \theta \le \frac{\pi}{2}$$ $$c'(\theta) = (-\sin\theta, \cos\theta, 0)$$ $$||c'(\theta)|| = 1$$ $$\int_{0}^{\pi/2} -\cos \theta + \sin \theta + 0 d\theta = \left[-\sin \theta - \cos \theta \right]_{0}^{\pi/2} = \left(4 - 0 \right) - \left(0 - 1 \right) = 40$$ (6) (10 points) Show that the vector field $\mathbf{F} = \langle -z, x, y \rangle$ is not conservative, and evaluate $\int_C \mathbf{F} d\mathbf{s}$, where C is the straight line from the origin to the point (1, 2, 2). $$\operatorname{uvl}(f) = \begin{vmatrix} i & j & k \\ -1 & 2 & 34 \\ -1 & 2 & 4 \end{vmatrix} = \langle 1, 1, 1, 7, 1$$ $$\int_{0}^{1} (-2t_{1}t_{1}, 2t) \cdot (1_{1}^{2} | 2_{1}^{2}) dt = \int_{0}^{1} -2t + 2t + 4t dt = \int_{0}^{1} 4t dt$$ $$= \left[2t^{\nu}\right]_{b}^{\prime} = 2$$ (7) (10 points) Show that the vector field $\mathbf{F} = \langle -y, z - x, y \rangle$ is conservative, and find $\int_C \mathbf{F} d\mathbf{s}$, where C is the shortest path on the unit cube from (0,0,0) to (1,1,1). $$f_{1}: \int_{-y}^{-y} dx = -xy + c_{1}(y + y) f_{2}: \int_{z-x}^{-y} dy = zy - xy + c_{2}(x + y) f_{3}: \int_{z-x}^{-y} dx = zy + c_{3}(x + y)$$ $$f(x + y) = -xy + c_{2}(x + y) f(x + y) = -xy + c_{3}(x + y)$$ $$\int_{C} E dy = f(1/1) - f(0/0) = -1+1 = 0$$ (8) (10 points) Integrate the vector field $\mathbf{F} = \langle x, y, z \rangle$ over the triangle with vertices (2,0,0), (0,2,0) and (0,0,2). vertices $$(2,0,0), (0,2,0)$$ and $(0,0,2)$. $$T(u,v) = (u,v, 2-u-v)$$ $$\frac{\partial T}{\partial u} = (1,0,-1)$$ $$\frac{\partial T}{\partial v} = (0,1,-1)$$ $$\frac{\partial T}{\partial v} = \left(o_{1} i_{1} \gamma \right)$$ $$\overline{N} = \frac{9\pi}{3!} \times \frac{9\Lambda}{3!} = \begin{vmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ 1 & 4 & k \end{vmatrix} = \langle 1 & 1 & 1 \rangle$$ $$\int \int (u, \sqrt{2u} - v) \cdot (u, \sqrt{2u}) dv du = \int \int u \sqrt{2u} dv du$$ $$= \int_{0}^{2} \int 2u dv du$$ $$= \int_{0}^{2} \int 2u dv du$$ $$= \int \sqrt{2u} - 4u dv du$$ $$\int_{0}^{2} 4 - 2u \, du = \left[4u - u^{2} \right]_{6}^{2} = 8 - 4 = 4$$ (9) (10 points) Use Green's Theorem to evaluate $\int_C \mathbf{F} d\mathbf{s}$, where $\mathbf{F} = \langle e^{2y}, e^{-2x} \rangle$, and C is the boundary of the unit square, oriented counter-clockwise. and C is the boundary of the unit square, oriented counter-clockwin $$\int_{C} F \cdot ds = \iint_{D} \frac{\partial F_{2}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{2}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{2}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} dA$$ $$\int_{C} \frac{\partial F_{3}}{\partial x} - \frac{\partial F_{3}}{\partial y} \frac{$$ $$= e^{-2} + (1-e^{2}) - 1 = e^{-2} - e^{2}$$ (10) (10 points) Use Stokes' Theorem to evaluate the integral of curl(F) over the unit hemisphere $x^2 + y^2 + z^2 = 4$, with $z \ge 0$, where $\mathbf{F} = \langle -y, x, z \rangle$. $$\int_{0}^{2\pi} \langle 2\sin\theta, 2\cos\theta, 0 \rangle. \langle 2\sin\theta, 2\cos\theta, 0 \rangle d\theta$$ $$= \int_{0}^{2\pi} |4d\theta| = \left[40\right]_{0}^{2\pi} = 8\pi$$