Math 233 Calculus 3 Spring 13 Midterm 3b
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e Do any 8 of the following 10 questions.
e You may use a calculator without symbolic algebra capabilities, but no notes.
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(1) (10 points) Write down limits for the integral over the region in the positive
octant below the surface z = 2zy and inside the cylinder z? + 3 = 1.
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(2) (10 points) Use a triple integral to find the volume of the tetrahedron with
vertices (0,0,0), (3,0,0), (0,3,0) and (0,0,3).
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(3) (10 points) Draw a picture of the region described by the limits of the fol-
lowing integral, and write down limits for the region interms of cartesian
coordinates.
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(4) (10 points) Use the change of variable T'(u,v) = (u — uv,uv) to evaluate
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where D is the triangle with vertices (0,0), (0,1) and (1,0).




(5) (10 points) Let f(z,y,2z) = —x +y + z. Evaluate [ f ds, where C is the

a
portion of the unit circle in the zy-plane which lies in the positive octant,
oriented counter-clockwise.
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(6) (10 points) Show that the vector field F = (—z, x,y) is not conservative, and

evaluate [ F ds, where (' is the straight line from the origin to the point

(1,2,2).
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(7) (10 points) Show that the vector field F = (—y, z — ,y) is conservative, and
find [, F ds, where C' is the shortest path on the unit cube from (0,0,0) to

(1,1,1).

ﬂ" j*‘j“\" b ’ﬁ*ﬁ(%ﬁ')

T J%-‘ldlj - 13_ l‘ﬁ +G ()
g S Y M = ?7(0* L3(1’Jﬂ=’>

Youue) =
'—1\9 '\'?rlj . i

S Edy = ﬁ(‘\‘lﬂ“ﬂot"l“\ = glil=o
&




(i)

(%%)

9

(8) (10 points) Integrate the vector field F = (x,y,z) over the triangle with

vertices (2,0,0),(0,2,0) and (0,0, 2). " v
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(9) (10 points) Use Green’s Theorem to evaluate [ F ds, where F = (e® e~%7)

c
and C' is the boundary of the unit square, oriented counter-clockwise.

Fds = % oh
5 BECE ggb 5 40 4y

K F 4
S j —22:’1): 'Latj Alo d,
g v i




3

11

(10) (10 points) Use Stokes Theorem to evaluate the integral of curl(F) over the
unit hemisphere 22 + y? + 2% = 4, with z > 0, where F = (—y, z, z}.
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