Math 233 Calculus 3 Spring 13 Sample midterm 3

- (1) Write down limits for the following integrals.
 - (a) The integral over the region in the octant $x \ge 0, y \le 0, z \le 0$ inside the cylinder $x^2 + y^2 = 4$ and the ellipsoid $2x^2 + 2y^2 + z^2 = 4$.
 - (b) The integral over region with $y \leq 0$, which lies below the negative cone $z^2 = 3x^2 + 3y^2$ with $z \leq 0$, and inside the sphere of radius 5.
 - (c) The integral over the tetrahedron with vertices (0, 0, 0), (0, 1, 0), (0, 1, 1)and (1, 1, 1).
- (2) Find the volume of the solid contained in the cylinder $x^2 + y^2 = 4$, below the surface $z = (x + y)^2$ and above the surface $z = -2(x y)^2$.
- (3) Use spherical coordinates to evaluate the following integral.

$$\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{0}^{\sqrt{4-x^2-y^2}} e^{-(x^2+y^2+z^2)^{3/2}} dz dy dx$$

(4) Evaluate

$$\int \int_{R} (y-x)^2 dA,$$

where R is the region bounded by the lines y = x, y = 2x, y = x + 2 and y = 2x - 1, using the change of variable T(u, v) = (u - v, 2u - v).

(5) Let $f(x, y, z) = e^x + zy$. Evaluate

$$\int_C f ds,$$

where C is the straight line path from (-1, 3, 2) to (4, 6, 6).

(6) Show that the vector field $\mathbf{F} = \langle y^2, x, -z \rangle$ is not conservative. Evaluate

$$\int_C \mathbf{F}.d\mathbf{s}$$

where C is the circle of radius 4 in the plane z = 1 centered on the z-axis.

(7) Show that the vector field $\mathbf{F} = \langle ze^{xz}, -z\sin(yz), xe^{xz} - y\sin(yz) \rangle$ is conservative, and find a function f(x, y, z) such that $\nabla f = \mathbf{F}$. Evaluate

$$\int_C \mathbf{F}.d\mathbf{s}$$

where C is the curve formed by the intersection of the plane z = 2x + 3y with the sphere of radius 36 in the positive octant, oriented anticlockwise around the z-axis.

- (8) Find the surface area of the paraboloid $z = 16 x^2 y^2$ in the first octant.
- (9) Find the integral of the vector field $\mathbf{F} = \langle x, y, x + y \rangle$ over the surface on the paraboloid $z = x^2 + y^2$ lying over the unit disc in the xy-plane.
- (10) Use Green's Theorem to evaluate $\int_C \mathbf{F} d\mathbf{s}$, where $\mathbf{F} = \langle x + y, x^2 y \rangle$ and C is the boundary of the region enclosed by $y = x^2$ and $y = \sqrt{x}$ for $0 \le x \le 1$.
- (11) Use Stokes' Theorem to evaluate the integral of $\operatorname{curl}(F)$ through the part of the cone $z^2 = x^2 + y^2$, with $2 \le z \le 4$, and with the outward pointing normal, where $\mathbf{F} = \langle x^2 + y^2, x + z^2, 0 \rangle$.