Math 231 Calculus 1 Fall 13 Midterm 2a

Name: Solutions

- Do any 8 of the following 10 questions.
- You may use a calculator, but no notes.

1	10	
2	10	
3	10	
4	10	· ·
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
	80	

Midterm 2	
Overall	

(1) (10 points) Find the derivative of $f(x) = \tan^{-1}(\frac{3}{x^2})$.

$$\frac{1}{1+\left(\frac{3}{2}i\right)^{2}} \cdot 3 \cdot (-i)x^{-3} = \frac{-6}{x^{3}+\frac{9}{x}} = \frac{-6x}{x^{4}+9}$$

Nok:
$$\frac{3}{x^2} = 3x^{-2}$$
 $\frac{1}{dx}(3x^{-1}) = -6x^{-3}$
w: $\frac{d}{dx}(\frac{3}{x^2}) = \frac{x^2(3) - 2x \cdot 3}{x^4} = \frac{x^2 \cdot 0 - 6x}{x^4} = -6x^{-3}$

(2) (10 points) Find the derivative of $f(x) = e^{-3x^2} \sin(x)$.

$$e^{-3x^2}$$
. $(-6x) \sin(x) + e^{-3x^2} \cos(x)$

(3) (10 points) Find the second derivative of
$$f(x) = \sqrt{2x^2 + 3}$$
. = (2x²+3)

$$f'(n) = \frac{1}{2} (2x^2 + 3)^{-1/2} \cdot 4x$$

$$f'(n) = \frac{1}{2} (2x^{2} + 3) \cdot 4x$$

$$f''(n) = -\frac{1}{4} (2x^{2} + 3) \cdot 16x^{2} + 2(2x^{2} + 3)$$

(4) (10 points) The graphs of the functions f and g are shown below.

- (a) Let h(x) = f(x)g(x) Find h'(1). (b) Let h(x) = f(g(x)). Find h'(3).

a)
$$h'(x) = f'(x)g(x) + f'(x)g'(x)$$

 $h'(1) = f'(1)g(1) + f(1)g'(1)$
 $\frac{1}{3} \cdot -1 + 2\frac{2}{3} \cdot 1 = \frac{7}{3}$

b)
$$h'(3) = f'(g(3)).g'(3)$$

= $f'(1).1 = \frac{1}{3}$

(5) (10 points)

(a) Suppose a function f(x) satisfies f(x) > 0 for all x. What can you say about f'(x)?

Nothing.

(b) Suppose a function g(x) satisfies g'(x) < 0 for all x. What can you say about g(x)?

 $g'(x) < 0 \Leftrightarrow g(x)$ decreasing

(6) (10 points) The graph of a function f(x) is drawn below. On the top axes indicate where f(x) is increasing. Sketch the graph of f'(x) on the lower axes.

(7) (10 points) The equation $x + x^2y + \cos y = 2$ determines a curve in the plane. Find the equation of the tangent line to the point (1,0).

wrt x:

$$y-0 = (-1)(x-1)$$

wrty: x' + 2xx'y + x2 - siny = 0

$$\frac{dx}{dy} = -1$$

(8) (10 points) A hot air balloon rises vertical upwards from a distance of 2 km away. When yousee the ball at an angle of $\pi/6$, the angle is changing at a rate of 0.2 radians/hour. How fast is the balloon rising?

$$\tan \theta = \frac{y}{2}$$

$$\tan (000) = \frac{y(t)}{2}$$

$$sec^{2}(\Theta(t))\frac{d\theta}{dt} = \frac{1}{2}\frac{dy}{dt}$$

$$sec^{2}(\frac{1}{6})0.2 = \frac{1}{2}\frac{dy}{dt}$$

$$\frac{4}{3}.0.4 = \frac{1}{4} = \frac{1}{30} tan/har$$

(9) (10 points) The value of $\tan x$ at $\pi/4$ is 1. Use linear approximation to estimate $\tan^{-1}(0.8)$. What is the percentage error in the approximation?

$$f(x+h) \approx f(x) + hf'(x)$$

 $f(x) = tau'(x)$ $f'(x) = \frac{1}{1+x^2}$
 $f(1) = \frac{\pi}{4}$ $f'(1) = \frac{1}{1+\xi^{\alpha}1^2} = \frac{1}{2}$

$$f(1-0.2) \approx \frac{7}{4} - 0.2.\frac{1}{2} \approx 0.6854$$

penentage evar:
$$\frac{|\tan^{4}(0.8) - 0.6854|}{\tan^{4}(0.8)} \times 100 \approx 1.6\%$$

(10) (10 points) Find the absolute maximum and minimum of $f(x) = x^2 - 4x - 2$ on the interval [-3, 3].

$$f'(x) = 2x - 4$$

solve $f'(x) = 0$: $x = 2$
check: $f(-3) = 19$ max
 $f(2) = -6$ min
 $f(3) = -5$