Math 231 Calculus 1 Fall 13 Midterm 1b

Name: Solutions

- Do any 8 of the following 10 questions.
- You may use a calculator, but no notes.

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
	80	

Midterm 1	
Overall	

(1) (10 points) Plot the points (-4,1) and (2,-3) on the grid below, and draw the straight line through the two points. Find the equation of the straight line.

FIGURE 1

$$stope = \frac{1 - (-3)}{-4 - 2} = \frac{4}{-6} = -\frac{2}{3}$$

$$y - 1 = -\frac{7}{3}(x+4)$$

$$y = -\frac{2}{3}x + 1 - \frac{8}{3}$$

$$y = -\frac{2}{3}x - \frac{5}{3}$$

(2) (10 points) The graph of y = f(x) is shown below. Evaluate each limit, or write DNE if the limit does not exist. No justifications are necessary.

FIGURE 2. f(x)

- (a) $\lim_{x\to 2^-} f(x)$ 3
- (b) $\lim_{x\to 4} f(x)$ DNE
- (c) $\lim_{x\to 6-} f(x)$ 7
- (d) $\lim_{x\to 6+} f(x)$ DNE
- (e) $\lim_{x\to 9} f(x)$ 5

- (3) (10 points) Sketch the graph of $f(x) = \cos 2x$.
 - (a) What is the average rate of change from x = 0 to $x = \pi/4$?
 - (b) Looking at the graph, do you expect this to be bigger or smaller than the actual rate of change at x = 0?

a)
$$\frac{f(x_1)-f(x_2)}{x_1-x_2} = \frac{0-1}{x_1/4-0} = \frac{-4}{11}$$
b) smaller

(4) (10 points) Evaluate the limit algebraically. For an infinite limit, write $+\infty$ or $-\infty$. If a limit does not exist (DNE), you must justify why this is the case.

$$\lim_{x \to 0} \frac{\sin 2x}{3x}$$

$$2x=0 \Leftrightarrow x=0/2$$

$$\lim_{\theta\to0} \frac{\sin\theta}{3\theta/2} =$$

$$\frac{2}{3}\lim_{\theta\to 0}\frac{\sinh\theta}{\theta}=\frac{2}{3}$$

(5) (10 points) Evaluate the limit algebraically. For an infinite limit, write $+\infty$ or $-\infty$. If a limit does not exist (DNE), you must justify why this is the case.

$$\lim_{x \to 4} \frac{x^2 - x - 12}{x - 4}$$

$$\lim_{x\to 74} \frac{(x-4)(x+3)}{(x-4)} = \lim_{x\to 74} x+3 = 7$$

(6) (10 points) Evaluate the limit algebraically. For an infinite limit, write $+\infty$ or $-\infty$. If a limit does not exist (DNE), you must justify why this is the case.

$$\lim_{x \to 9} \frac{36}{x-9} - \frac{1}{\sqrt{x}-3}$$

$$\lim_{3 \to 9} \frac{63 - (\sqrt{32} + 3)}{(\sqrt{32} + 3)(\sqrt{32} - 3)} = \lim_{3 \to 9} \frac{-1}{\sqrt{32} + 3} = \frac{-1}{6}$$

(7) (10 points) Use the limit definition of the derivative to differentiate $f(x) = x^2 - 4x$.

 $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = \lim_{h\to 0} \frac{(x+h)^2-4(x+h)-x^2+4x}{h}$ $= \lim_{h\to 0} \frac{x^2+2xh+h^2-4x-4h-x^2+4x}{h} = \lim_{h\to 0} 2x+h-4 = 2x-4$

(8) (10 points) Use the limit definition of the derivative to differentiate $f(x) = \frac{1}{1+x}$.

$$\lim_{h\to 0} \frac{f(n+h)-f(x)}{h} = \lim_{h\to 0} \frac{1}{1+n+h} \frac{1}{1+n} = \lim_{h\to 0} \frac{1}{h} \frac{1+n-(1+n+h)}{(1+n+h)(1+n)}$$

$$= \lim_{h\to 0} \frac{-1}{(1+n+h)(1+n)} = \frac{-1}{(1+n)^2}$$

(9) (10 points) find the derivative of $f(x) = 5x^{10} - 8e^x + 7$.

(10) (10 points) The graph of a function f(x) is drawn below. Sketch the graph of f'(x).

