Math 233 Calculus 3 Spring 12 Midterm 1a

Name: Solutions

- Do any 8 of the following 10 questions.
- You may use a calculator, but no notes.

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
	80	

Midterm 1	
Overall	

(1) (10 points) Find the nagle between the two vectors $\langle -1, 2, 1 \rangle$ and $\langle 1, 1, -3 \rangle$.

$$\frac{y \cdot \psi}{-2} = \frac{||y|| ||\psi|| \cos \theta}{||x||} \cos \theta$$

$$-2 = \sqrt{67} \sqrt{11} \cos \theta$$

$$\theta = \cos^{-1} \left(\frac{-2}{\sqrt{6}\sqrt{11}}\right)$$

(2) (10 points) Find the area of the triangle with vertices (1, -1, 1), (2, 3, 4) and (0, 1, 3).

$$\overrightarrow{AB} = \langle 1, 4, 3 \rangle$$
 $\overrightarrow{AC} = \langle -1, 2, 2 \rangle$

aver of triangle = = = 1/1 ABXAC !!

$$\begin{vmatrix} 1 & + & R \\ 1 & 4 & 3 \end{vmatrix} = \langle 2, -5, 6 \rangle$$

 $\begin{vmatrix} -1 & 2 & 2 \end{vmatrix}$ avea = $\frac{1}{2}\sqrt{4+25+36} = \frac{1}{2}\sqrt{75}$

(3) (10 points) Find a parametric equation for the line of intersection of the two planes x + y - z = 1 and 2x + y + z = 2.

normal vectors
$$n_1 = \langle 1, 1, -1, 7 \rangle$$
 $n_2 = \langle 2, 1, 1, 7 \rangle$

$$y_1 \times y_2 = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = \langle 2_1 - 3_1 - 1 \rangle$$
 direction of line

pant an line they
$$x=0$$
 (Dy- $z=1$) (D+(2): $2y=3$ $y=3/2$
 $=> z=1/2$.

so line is
$$(0,\frac{3}{2},\frac{1}{2})+t(2,-3,-1)$$

(4) (10 points) Find the projection of the vector $\langle 4, -2, 1 \rangle$ onto the vector $\langle 2, 3, -1 \rangle$.

$$\frac{y.y}{y.y} = \frac{8-6-1}{4+9+1} < \frac{2}{3}, -1 >$$

$$= \frac{1}{14} < \frac{2}{3}, -1 >$$

(5) (10 points) Find the equation of the plane containing the line $\langle 1, 0, -3 \rangle + t\langle 1, 1, 1 \rangle$ and the point (4, 2, 1). (Hint: find the normal vector.)

plane contains
$$<1,1,17$$
 and $<3,2,4$?

80 $y = \begin{vmatrix} i & j & k \\ 1 & i & i \\ 3 & 2 & 4 \end{vmatrix} = <2,-1,-1$?

equation of plane is $(x - <1,0,-3)$. $<2,-1,-1$? = 0

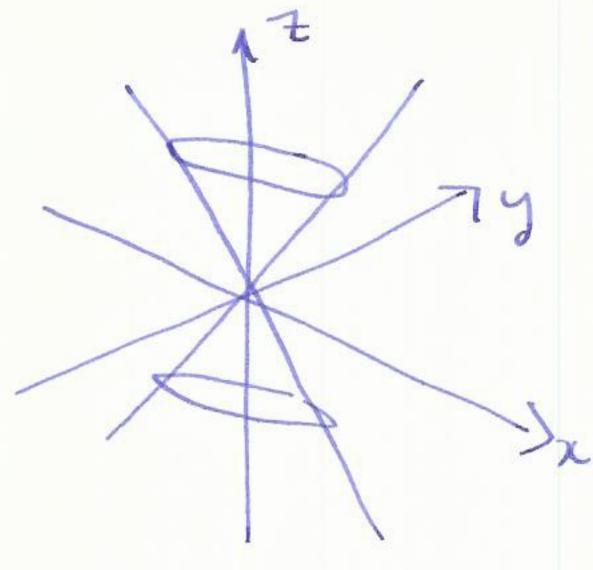
 $2x - y - 7 = 445$

(6) (10 points) Sketch the surfaces and label their intersections with the coordinate axes.

(a)
$$z^2 = x^2 + 4y^2$$

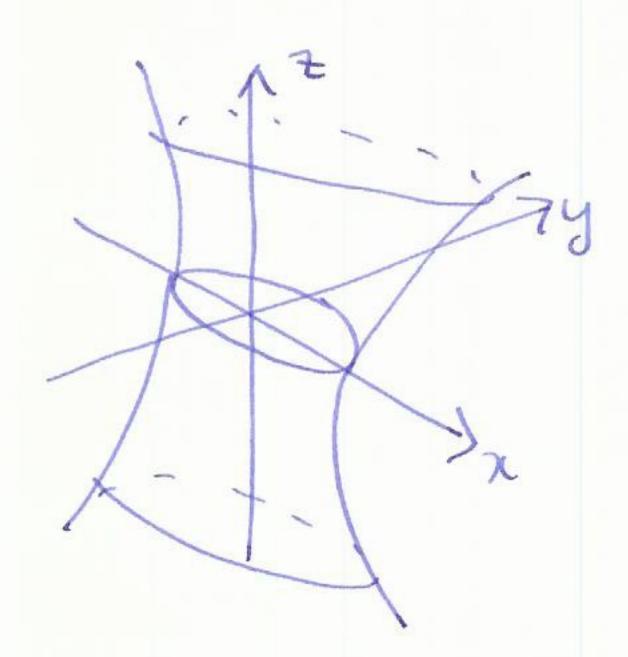
(a)
$$z^2 = x^2 + 4y^2$$

(b) $x^2 + 9y^2 = 4z^2 + 36$



cone

interects axes at (0,0,0) only



are-sheeted hyperbolaid

& was no interactions with z-axis.

(7) (10 points) Write down a parameterization for the straight line segment from (1, 2, -1) to (2, 3, 5). Use the integral formula for arc length to find the length of this line.

(8) (10 points) The position of a particle is given by $\mathbf{r}(t) = \langle \ln(t+1), e^{-2t}, \tan(x/2) \rangle$, find the acceleration of the particle.

$$\Gamma'(t) = \langle \frac{1}{1+t} | -2e^{-2t}, \frac{1}{2} \sec^{2}(\frac{x}{2}) \rangle$$

$$\Gamma''(t) = \langle -\frac{1}{(1+t)^{2}}, 4e^{-2t}, \sec(\frac{x}{2}) \sec(\frac{x}{2}) \tan(\frac{x}{2}), \frac{1}{2} \rangle$$

$$= \langle -\frac{1}{(1+t)^{2}}, 4e^{-2t}, \frac{1}{2} \sec^{2}(\frac{x}{2}) \tan(\frac{x}{2}) \rangle$$

(9) (10 points) An object is thrown from the origin with initial velocity $\langle 10, 10, 10 \rangle$ m/s. Find an expression for the position of the object at time t it moves under the gravitational force $\mathbf{F} = \langle 0, 0, -gm \rangle$ m/s². Feel free to take g = 10.

$$\Gamma''(t) = \langle 0, 0, -10 \rangle
\Gamma'(t) = \langle 0, 0, -10t \rangle + V_0 \qquad V_0 = \langle 10, 10, 10 \rangle
\Gamma(t) = \langle 0, 0, -5t^2 \rangle + V_0 + \Gamma_0 \qquad \Gamma_0 = \langle 0, 0, 0 \rangle .$$

(10) (10 points) The position of an object is given by $\mathbf{r}(t)$, and it moves with constant speed.

(a) Does the object have to move in a straight line?

(b) What can you say about $\mathbf{r}'(t)$?

(c) Show that $\mathbf{r}'(t)$ is perpendicular to $\mathbf{r}''(t)$.

c)
$$||E'(t)||^2 = C^2$$

$$||E'(t)||^2 = C^2$$

$$||E'(t)||^2 = C^2$$

rife). rife) differentiate urt t

$$2r'(t).r''(t) = 0$$