Math233 Calculus 3 Spring 12 Sample midterm 1

Problem 1. Let $\vec{\mathbf{u}} = \langle 4, -3, 5 \rangle$ and $\vec{\mathbf{v}} = \langle 1, 2, -1 \rangle$.

- (a) Find a unit vector in the direction of $\vec{\mathbf{v}}$.
- (b) Find $|| \operatorname{proj}_{\vec{\mathbf{v}}} \vec{\mathbf{u}} ||$.
- (c) Express $\vec{\mathbf{u}}$ as the sum of $\vec{\mathbf{m}} = \vec{\mathbf{u}}_{\parallel}$ parallel to $\vec{\mathbf{v}}$, and $\vec{\mathbf{n}} = \vec{\mathbf{u}}_{\perp}$ orthogonal to $\vec{\mathbf{v}}$.

Problem 2. Consider three points A(-2, 1, -2), B(1, 2, -1), C(1, 2, 5).

- (a) Are the points A, B, C collinear? Justify your answer using the cross-product.
- (b) Find the area of the triangle formed by A, B, C.
- (c) Find the equation of the plane that contains A, B, C.

Problem 3. Consider two points E(1, 0, 1), F(-3, 2, 3). Find a parametric equation of the line through E and F.

Problem 4.

- (a) Find the angle between the planes x y = 1 and y z = 2, and the line of intersection.
 (Hint: Angle between the planes is the angle between their normal vectors.)
- (b) Find the equation of the plane that passes through the point (2, -1, -1) and is perpendicular to the line (0, 1, 2) + t(2, -1, -1).

Problem 5. For each equation below, sketch the surface in \mathbb{R}^3 that it describes.

- (a) $4x^2 + 4y^2 + z^2 = 16$
- (b) $4x^2 + y^2 + 4z^2 = 16$
- (c) $z = 4x^2 + 9y^2$
- (d) $z = 4x^2 9y^2$
- (e) $4x^2 + 9y^2 = 2z^2 + 72$
- (f) $9x^2 + 4z^2 = 2y^2 72$
- (g) $9x^2 + 4y^2 = 2z^2$
- (h) $4x^2 9y^2 = 72$

Problem 6. A particle starts at location i - 2j + k with initial velocity 2i - j + 3k. Its acceleration is $a(t) = 3ti + 6t^2j - 2k$. Find the location of the particle at t = 2.

Problem 7.

A string in the shape of a helix has a height of 16 cm and makes three full rotations over a circle of radius 2 cm.

- 1. Find a parametrization $\mathbf{r}(t)$ for the string.
- 2. Compute the length of the string.

Problem 8.

Show that if $||\mathbf{r}(t)|| = c$ then $\mathbf{r}(t) \perp \mathbf{r}'(t)$.

Problem 9.

The position of a particle is $\mathbf{r}(t) = e^t \mathbf{i} + \sqrt{2} t \mathbf{j} + e^{-t} \mathbf{k}$.

- 1. Show that the speed of the particle at time t is $e^t + e^{-t}$.
- 2. Find the unit tangent vector $\mathbf{T}(t)$.
- 3. Find the total distance travelled by the particle for $1 \le t \le 4$.