JC

Coffee

Department of Mathematics College of Staten Island (CUNY)

FINAL SPRING 2012

MTH 232 CALCULUS II	NAME
Show your work—otherwise no cre	dit. Each part of each question is worth 5 points.
	of $y = e^{-x}$ and above the x-axis on the interval $0 \le x < \infty$ ompute the volume of revolution. Volume =
O	-x
2. a. Compute the Taylor S. Maclaurin series).	Series for $f(x) = e^{-x}$ around $c = 0$ (i.e. compute the

b. What is the radius of convergence for the power series that you computed in 2a?

3. Sketch the graph of the polar equation $r = 3 + \cos(t)$

b. Carefully write the Matlab commands needed to compute the area of the region enclosed by the polar graph of $r = 3 + \cos(t)$

c. When r = 3 + cost(t), then $x = \underline{}$ and $y = \underline{}$ Use these values of x and y to compute the slope of the tangent line at $t = \frac{\pi}{2}$

4. Find the indefinite integrals below:

a.
$$\int \frac{x^2 + 1}{x} dx = \underline{\hspace{1cm}}$$

b.
$$\int \frac{x^2 + 1}{x + 1} dx = _____$$

$$\int \frac{x}{x^2 + 1} dx = \underline{\hspace{1cm}}$$

$$\int \frac{dx}{x^2 + 1} = \underline{\hspace{1cm}}$$

For questions 5-8 determine if the series converges or diverges. State which test you are using in 5, 7, 8. Explain your answer.

5. $\sum_{n=0}^{\infty} \left(\frac{2}{e}\right)^n$ Circle your answer: converges or diverges. Test:

Explanation:

Explanation:

6. $\sum_{n=0}^{\infty} \frac{1}{1+n^2}$ Circle your answer: converges or diverges. Test: ____Integral Test____ Explanation:

7. $\sum_{n=0}^{\infty} \frac{(-1)^n}{1+n^2}$ Circle your answer: converges or diverges. Test: ______

9. a. Does the **SEQUENCE** with the nth term $a_n = \left(1 + \frac{1}{n}\right)^n$ converge? Circle correct answer: Yes No. If yes, what does it converge to? _____ If no, explain why.

b. Does the **SERIES** $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n$ converge? Circle correct answer: Yes No. If yes, what does it converge to? _____ If no, explain why.

10. Let \mathbf{v} and \mathbf{w} be vectors where $\mathbf{v} = \langle 3, 1, -1 \rangle$ and $\mathbf{w} = \langle 2, 5, 1 \rangle$ a. Sketch the vectors in 3-dimensional space—label your axes.

b. Compute the parametric equations of the line through the point (2,3,-6) in the direction of \mathbf{v} .

c. Compute v x w

d. Compute the equation of the plane that contains the vectors \mathbf{v} and \mathbf{w}