I Coffee

Department of Mathematics College of Staten Island (CUNY)

FINAL SPRING 2011

MTH 232 CALCULUS II

NAME____

Explain your answers—otherwise, no credit. Each part of each question is worth 5 points.

1. a.
$$\int \frac{x^2 + 4}{x} dx = _____$$

$$\int \frac{x}{x^2 + 4} dx = \underline{\hspace{1cm}}$$

$$\int \frac{dx}{x^2 + 4} = \underline{\hspace{1cm}}$$

$$\int \frac{1}{x^2 - 4} dx = \underline{\hspace{1cm}}$$

2. Draw a sketch of the region enclosed by $f(x) = x^2$ and $g(x) = x^{1/2}$ on the interval [0,1] and label the curves.

Find the volume of the solid generated by revolving the region above around the x-axis.

- 3. Determine whether the following series converge or diverge:
- a. $\sum_{n=0}^{\infty} \left(\frac{e}{\pi}\right)^n$ Converges or diverges (circle the correct answer). Test:

Explanation:

1

c. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ Converges or diverges (circle the correct answer). Test:

Explanation:

d.
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n$$
 Converges or diverges (circle the correct answer). Test: _____

Explanation:

4. Compute the Taylor series for $f(x) = \ln(x+1)$ centered at c=0.

b. Compute the radius of convergence for the Taylor series in 4a.

5. a. Sketch the graph of the polar equation r = cos(t).

b. Write the Matlab commands needed to compute the area of the region enclosed by the polar graph of r = cos(t).

c. When $r=\cos(t)$, then x =____ and y =____

Compute the slope of the tangent line to the graph of r = cos(t) at $t = \frac{\pi}{3}$ and draw this tangent line on your graph in 5a.

d. Find a mathematical expression for the arc length of the curve described by x and y in your answer to part c above and where $0 \le t \le \frac{\pi}{3}$. You do not need to compute the numerical answer.

- 6. Let $\mathbf{v} = <1,-1,2>$ and $\mathbf{w} = <0,3,5>$
- a. Sketch the vectors v and w.

b. Find the parametric equations of the line through the point (1,2,-1) in the direction of v.

c. Compute v x w

- d. Find the equation of the plane that contains the vectors \mathbf{v} and \mathbf{w}
- 7. a. $\int \ln(x) dx = \underline{\hspace{1cm}}$

$$\int \ln(x^2)dx = \underline{\hspace{1cm}}$$

b. Extra Credit (5 points): $\int_{0}^{1} \ln(x) dx = \underline{\qquad}$ Hint: Improper Integral and L'Hopital.

1 1 11