Math 329 Geometry Spring 11 Midterm 1

• You may use a compass and straight edge, but no notes.

1	20	
2	20	
3	20	2
4	20	
5	20	
6	35	
	135	

Midterm 1

Overall

(1) (20 points) Construct a rectangle with the same area as the triangle below.

find perpendicular through vertex construct rectangle with height and box: birect one edge to get rectangle with half theo execa

this me.

(2) (20 points) Given the segment AB below, construct a right an with hypotenuse of length equal to AB , and with angles π/6, π Hint: construct an equilateral triangle first.	
A B	
construct an equilateal triangle	This are
then construct perpendicular through vo	tex

(3) (20 points) If a quadrilateral has all four vertices on a circle, show that any pair of opposite angles sum to π .

Hint: use the relation between the angle at the center and the angle at the circumference..

(4) (20 points) Draw three points A, B and C which are not colinear. Construct a circle which contains all three points.

Hint: the perpendicular bisector of a chord runs through the center of the circle.

construct perpendicular biscoper to AB = set of paths equidiblent to BC = set of paths equidiblent to BC construct perpendicular biscoper to BC = set of paths equidiblent to BC interaction is equidiblent to all 3 of type so center of and the through type

(5) (20 points) Show that angle $\angle BAC$ is half the size of angle $\angle AOB$.

A AOB iscocles so $\angle OAB = \angle ABO = x$ sum of angles in a triangle is TT so $\angle AOB = TT - 2x$ tangent needs adius at right angles so $\angle AFB = \frac{TT}{2}$.

so $B = \frac{TT}{2} - x = \frac{TT}{2} - \frac{x}{2} = \frac{1}{2} \angle AOB$ as required.

(6) (35 points) For any triangle, an angle bisector divides the opposite side in the ratio of the adjacent sides. Below, complete the proof that if AD bisects angle $\angle CAB$ then

 $\frac{|AB|}{|AC|} = \frac{|DB|}{|DC|}.$

(a) There is a line through C parallel to AD which meets an extension of AB at a point E.

(b) $\angle ACE = \angle CAD$ opposite alternate angles are equal.

- (c) = \(\alpha BAD \)

 AD bixces the angle \(\alpha CAB \).
- (d) = $\angle AEC$ problet lines make equal angles.
- (e) AC = AE equal angles \Rightarrow equal villes.
- (f) $\frac{|AB|}{|AE|} = \frac{|DB|}{|DC|}$ Thates' theorem applied to Δ BCE with AD possible to CE.
- $\frac{|AB|}{|AC|} = \frac{|DB|}{|DC|}$ by put e) |A5| = |A4|