NAME:

MATH 130

FINAL EXAM

Spring 2007 Form M

Answer questions in the space provided below

Part I: Answer ALL ten questions worth 6 points each

1. If
$$f(x) = -x^2 - 3x + 1$$
 and $g(x) = 2x + 1$, compute and simplify $(f \circ g)(x) = ?$

2. If
$$f(x) = \frac{3x}{x+2}$$
, find and simplify $f^{-1}(x) = ?$

3. Sketch the graph of $f(x) = \sqrt{x + 20} + 30$. State domain and range of f.

4. Find an <u>equation</u> of the graph obtained by reflecting the graph of f(x) = |x| upside down and then shifting it 3 units up and 4 units right. Do <u>not</u> graph.

5. Solve the inequality $\frac{x-2}{(x-3)(x+1)} \ge 0$. Write your answer in interval notation

6. Prove the identity: $\tan \theta + \cot \theta = \sec \theta \csc \theta$

7. Sketch one period of the graph $y = -200 \cos{(\frac{x}{2} + \frac{\pi}{8})}$. Label the lowest points, the highest points and the x-intercepts of the graph with their coordinates.

8. A triangle has the following sides: a = 34.7 ft, b = 52.6 ft, c = 43.5 ft. Find the **measure** of its **biggest angle** only (round to two decimal places).

9. If $\sin u = -\frac{5}{13}$, (u in quadrant III) use a suitable identity to find the **exact value** of $\tan (2u)$. Write your answers as a simple fraction.

10. Evaluate (in terms of x) $\cos(\arctan \frac{x}{3}) = ?$

Part II: Answer ANY FIVE questions (worth 8 points each); cross out the two questions you choose not to answer.

11. If $f(x) = \frac{x(x-2)}{2x^2-2}$ find: (if any item does not exist, write "NONE") (a) the coordinates of the x-intercept(s):	
(b) the <u>coordinates</u> of the <u>y-intercept</u> :	
(c) the <u>equation</u> of the <u>vertical asymptote(s)</u> :	
(d) the <u>equation</u> of the <u>horizontal asymptote</u> :	
(e) sketch the graph of f together with all the points and lines foun above:	d

12. Find all <u>solutions</u> x (in <u>radians</u>) in the interval $[0,2\pi)$: $2\cos^2 x - \cos x = 0$

13. If
$$f(x) = 2x^3 - 5x^2 - 10x + 6$$

- (a) Give a complete list of <u>all</u> possible <u>rational</u> <u>zeros</u>:
- (b) Use synthetic division to **check** that $x = \frac{1}{2}$ is a rational zero:

(c) Find all remaining zeros:

(d) Write f as a product of linear factors:

$$f(x) =$$

14. Use algebra to find <u>all solutions</u> of the system:

$$y^2 - x^2 = 16$$

$$2x - y = 1$$

Sketch the graph of: $4y^2 - 9x^2 - 8y - 36x = 68$. Label the <u>vertices</u> of the graph in your sketch with their coordinates.

A farmer has 1800 ft of fencing to enclose a rectangular field alongside a river. The side of the field along the river doesn't require any fence.

(a) Express the area of the field as a function of x only

(b) Use your calculator to find the dimensions of the field (length and width) for which the area is a maximum.

17. Given complex number $z = 2(\cos 30^\circ + i \sin 30^\circ)$, compute z^4 first in trigonometric form, then convert your answer to standard form.

Important Properties and Formulas

Basic Identities

$$\sin x = \frac{1}{\csc x}, \qquad \sin (-x) = -\sin x$$

$$\cos (-x) = \cos x,$$

$$\cos x = \frac{1}{\sec x}$$
, $\tan (-x) = -\tan x$

$$\tan x = \frac{1}{\cot x},$$

$$\tan x = \frac{\sin x}{\cos x},$$

$$\cot x = \frac{\cos x}{\sin x},$$

Pythagorean Identities

$$\sin^2 x + \cos^2 x = 1,$$

$$1 + \cot^2 x = \csc^2 x,$$

$$1 + \tan^2 x = \sec^2 x$$

Sum and Difference Identities

 $\sin (u \pm v) = \sin u \cos v \pm \cos u \sin v$

 $\cos (u \pm v) = \cos u \cos v \mp \sin u \sin v$

$$\tan (u \pm v) = \frac{\tan u \pm \tan v}{1 \mp \tan u \tan v}$$

Cofunction Identities

$$\sin\left(\frac{\pi}{2}-x\right)=\cos x,$$

$$\tan\left(\frac{\pi}{2}-x\right)=\cot x,$$

$$\sec\left(\frac{\pi}{2} - x\right) = \csc x,$$

$$\sin\left(x \pm \frac{\pi}{2}\right) = \pm \cos x,$$

$$\cos\left(x \pm \frac{\pi}{2}\right) = \mp \sin x$$

Double-Angle Identities

$$\sin 2x = 2 \sin x \cos x,$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$= 1 - 2 \sin^2 x$$

$$= 2 \cos^2 x - 1,$$

$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$$

Half-Angle Identities

$$\sin \frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{2}},$$

$$\cos \frac{x}{2} = \pm \sqrt{\frac{1 + \cos x}{2}},$$

$$\tan \frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$

$$= \frac{\sin x}{1 + \cos x}$$

$$= \frac{1 - \cos x}{\sin x}$$

Inverse Trigonometric Functions

FUNCTION	DOMAIN	RANGE
$y = \sin^{-1} x$	[-1, 1]	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$y = \cos^{-1} x$	[-1, 1]	$[0, \pi]$
$y = \tan^{-1} x$	$(-\infty, \infty)$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
		(continued)