Math 130 Precalculus Spring 10 Midterm 1a

Name: Solutions

- You may use a graphing calculator.
- You may use a 3×5 index card of notes.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>105</td>
</tr>
</tbody>
</table>
(1) (10 points)
(a) What is the maximum number of distinct roots a cubic polynomial can have? Write down a cubic polynomial with this number of roots.
(b) What is the smallest number of distinct roots a cubic polynomial can have? Write down a cubic polynomial with this number of roots.

a) 3 \((x-1)(x-2)(x-3)\)
b) 1 \(x^3\)
(2) (10 points) Given \(u = 2 - 5i \) and \(v = 1 + 4i \), compute \(u + v \), \(uv \) and \(u/v \).

\[
u + v = 3 - i
\]

\[
u v = (2-5i)(1+4i) = 2 + 8i - 5i - 20i^2 = 22 + 3i
\]

\[
u \frac{v}{u} = \frac{(2-5i)(1-4i)}{(1+4i)(1-4i)} = \frac{2-8i-5i+20i^2}{1+16} = \frac{-18}{17} - \frac{13}{17}i
\]
(3) (10 points) Find the domain and the range of the following function and sketch its graph.

\[f(x) = 4 - \sqrt{4 - x} \]

- Domain: \(x \leq 4 \) or \((-\infty, 4]\)
- Range: \(x \leq 4 \) or \((-\infty, 4]\)
(4) (10 points) Find the equation of the graph obtained by taking the graph of \(f(x) = x^2 \) and shifting it 7 units to the left, then reflecting it across the y-axis, and finally shifting it down 3 units.

\[
\text{shift to left : } (x+7)^2 \\
\text{reflect across y-axis : } (-x+7)^2 \\
\text{shift down three units : } (-x+7)^2 - 3
\]
(5) (10 points) Consider \(f(x) = 2x^4 - 4x^2 \). Check \(f \) algebraically for symmetries. Graph \(f \) using the calculator and find (using the calculator) all zeros, local maxima and local minima, if any.

\[
f(-x) = 2(-x)^4 - 4(-x)^2 = 2x^4 - 4x^2 = f(x) \quad f \text{ is even.} \]

\[
f(-x) = f(x) \neq -f(x) \quad f \text{ is not odd.}
\]

\[
\text{Local max: } (0, 0)
\]
\[
\text{Local min: } (1, -2), (-1, -2)
\]
(6) (20 points) Let \(p(x) = 2x^3 - x^2 - 7x + 6 \).
(a) Give a complete list of all possible rational zeros.
(b) Check, using either long division or synthetic division, that \(x = 1 \) is a rational zero.
(c) Find all remaining zeros.
(d) Write \(p(x) \) as a product of linear factors.
(e) Sketch the graph of \(p(x) \).

\[
\begin{align*}
a) & \quad x - 1 \quad 2x^2 + x - 6 \\
& \quad 2x^3 - x^2 - 7x + 6 \\
& \quad 2x^3 - 2x^2 \\
& \quad x^2 - 7x + 6 \\
& \quad x^2 - x \\
& \quad -6x + 6 \\
& \quad -2x + 6 \\
& \quad 0 \\

\text{b) } & \quad 2x^2 + x - 6 = (2x - 3)(x + 2) \quad x = -2, 1 \frac{3}{2} \\
\text{c) } & \quad p(x) = (x - 1)(x + 2)(2x - 3) \\
\text{d) } & \quad (x, y) (0, 6), (-2, 0), (1.5, 0) \\
\text{e) } & \quad \text{Graph Sketch}
\end{align*}
\]
(7) (20 points) Consider the function

\[f(x) = \frac{x + 3}{2x^2 - 2x - 12} \]

(a) Find the domain of \(f \) and the vertical asymptotes.

(b) Find the horizontal asymptote of \(f \), if it has one.

(c) Find the zeros of \(f \) and the value of \(f(0) \).

(d) Sketch the graph of \(f \).

a) \[2x^2 - 2x - 12 = 2(2x - 3)(x + 2) \]
\[= 2(x^2 - x - 6) \]
\[\text{domain: } \mathbb{R} \setminus \{-2, 3\} \lor (-\infty, -2) \cup (-2, 3) \cup (3, \infty) \]

b) \[f(x) = \frac{p(x)}{q(x)} \]
where \(\deg p(x) \leq \deg q(x) \) so \(y = 0 \) is horizontal asymptote.

c) \[f(x) = 0 \text{ when } x+3=0 \text{ i.e. } x=-3. \]
\[f(-3) = \frac{3}{-12} = -\frac{1}{4} \]

d)\[\begin{array}{c|cccc|c}
\text{Signs} & x>3 & -2<x<3 & -3<x<-2 & x<-3 & f(x) \\
\hline
+ & + & + & + & + & + \\
- & + & - & - & - & - \\
+ & + & - & - & - & + \\
- & - & - & - & - & - \\
\end{array}\]
(8) (15 points) Consider the polynomials p and q given by

$$
p(x) = x^4 + x^3 + 3x^2 + 9x - 54, \quad q(x) = x^2 + 9
$$

(a) Calculate $\frac{p}{q}$ using long division.

(b) Find all real and complex zeros of p.

\[\begin{array}{c}
x^2 + q \\
\hline
x^4 + x^3 + 3x^2 + 9x - 54 \\
\hline
x^4 + 9x^2 \\
\hline
x^3 - 6x^2 + 9x - 54 \\
\hline
x^3 + 9x \\
\hline
-6x^2 - 54 \\
\hline
-6x^2 - 54 \\
\hline
0
\end{array}\]

\[\frac{p}{q} = x^2 + x - 6\]

\[b) \quad x^2 + x - 6 = (x + 3)(x - 2)\]

\[\text{roots are: } 3i, -3i, -3, 2 .\]