Math 231 Calculus 1 Fall 10 Midterm 1

	C 1	
Name: _	Solut	Tars

• You may use a calculator, but no notes.

1	20	
2	20	
3	20	
4	20	
5	20	
6	20	
	120	

Midterm 1	
Overall	

(1) (20 points)

- (a) Plot the two points (-1,3) and (2,-2) in the xy-plane, and draw the straight line that runs through both of them.
- (b) Write down the equation of the line.

b)
$$slope = \frac{\Delta y}{\Delta x} = \frac{3 - (-i)}{-1 - 2} = -\frac{5}{3}$$

 $y - y_0 = m(x - x_0)$
 $y - 3 = -\frac{5}{3}(x - (-1))$
 $y = -\frac{5}{3}x - \frac{5}{3} + 3$
 $y = -\frac{5}{3}x + \frac{4}{3}$

(2) (20 points) The graph of y = f(x) is shown below. Evaluate each limit, or write DNE if the limit does not exist. No justifications are necessary.

FIGURE 1. f(x)

- (a) $\lim_{x\to 2^{-}} f(x)$ 2
- (b) $\lim_{x\to 2} f(x)$
- (c) $\lim_{x\to 5} f(x)$ $+ \infty$
- (d) $\lim_{x\to 8+} f(x)$ 2

- (3) (20 points) Evaluate these limits. For an infinite limit, write $+\infty$ or $-\infty$. If a limit does not exist (DNE), you must justify why this is the case.
 - (a) $\lim_{x\to 1} \frac{x-1}{|x-1|}$
 - (b) $\lim_{x\to 0} \frac{\sin 2x \sin 3x}{x^2}$

 - (c) $\lim_{x\to 10} \frac{2-\sqrt{x-6}}{x-10}$ (d) $\lim_{h\to 0} \frac{(3x+h)^2-9x^2}{h}$

a)
$$\lim_{x\to 1} \frac{x-1}{|x-1|} = \lim_{x\to \infty} \frac{x}{|x|} = \begin{cases} +1 & x>0 \\ -1 & x<0 \end{cases}$$
 so DNE .

b)
$$\lim_{x\to 0} \frac{\sin 2x \sin 3x}{x^2} = \lim_{x\to 0} \frac{\sin 2x}{x} \frac{\sin 3x}{x}$$

$$\lim_{\gamma \leftarrow \gamma_0} \frac{\sin 2\chi}{\chi} = \lim_{\theta = 2\chi} \frac{\sin \theta}{\theta - \gamma_0} = \lim_{\theta \to 0} \frac{\sin 2}{\theta} = 2$$

$$\lim_{\chi \to 0} \frac{\sin 3\chi}{\chi} = \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = \lim_{\chi \to 0} \frac{\sin 3\chi}{\chi} = \lim_{\chi \to 0}$$

C) lim
$$\frac{2-\sqrt{x-6}}{x-10} = \frac{4-x+6}{2\pi\sqrt{x-6}} = \frac{-1}{(x-10)(2+\sqrt{x-6})} = \frac{-1}{2+\sqrt{x-6}} = \frac{1}{4}$$

d)
$$\lim_{h\to 0} \frac{(3x+h)^2 - 9x^2}{h} = \lim_{h\to 0} \frac{9x^2 + 6xh + h^2 - 9x^2}{h} = \lim_{h\to 0} 6x + h = 6x$$
.

(4) (20 points) For what value of c (if any) is the function f(x) continuous at x = 2? Justify your answer.

$$f(x) = \begin{cases} x + \frac{1}{x-1} & x < 2 \\ c & x = 2 \\ \frac{6\cos(\pi x)}{x} & x > 2 \end{cases}$$

$$\lim_{x\to 2^-} f(x) = \lim_{x\to 2^-} x + \frac{1}{x-1} = 2 + \frac{1}{2-1} = 3$$

$$\lim_{\gamma \leftarrow \gamma \geq +} f(x) = \lim_{\gamma \leftarrow \gamma \geq +} \frac{6 \cos(\pi x)}{5 c} = \frac{6}{2} = 3$$

both left and right limits exist and are the same. so function continuous if c=3.

(5) (20 points) A population of bacteria doubles in size every minute. If there are 100 bacteria at time 0, what is the average rate of change in population between 2 and 4 minutes?

time 0 1 2 3 4

Hbaderia 100 ree 400 800 1600

Hbaderia =
$$100.2^{t}$$
 (+ in unharks)

average rate of drange is $\Delta y = \frac{1600 - 400}{2} = \frac{600}{500}$

between $t=2$ and 4

(6) (20 points) You drop a stone off the top of an apartment building, and it takes roughly two seconds to hit the ground.

(a) Draw a rough sketch of the graph of distance against time for the stone.

(b) Looking at your graph, how would you compare the average rate of change between times 0 and 1 second, and between times 1 and 2 seconds.

both rates of drouge negative,

average Roc
between 9,1

between 1,2

i.e. stone gues downwards forster beforeen t=1,2 than between t=0,1.