Random walks on groups with negative curvature

Joseph Maher

joseph.maher@csi.cuny.edu

College of Staten Island, CUNY

July 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

F_2 free group on two generators

Set: all finite strings of letters $\{a, a^{-1}, b, b^{-1}\}/\sim$ Equivalence relation: $aa^{-1} \sim 1 \sim a^{-1}a \sim bb^{-1} \sim b^{-1}b$ Multiplication: concatenation $(aba^{-1})(ab) = abaa^{-1}b = abb$ Identity: $1 = \emptyset$ Notation: $F_2 = \langle a, b \mid \rangle$

Simple random walk \leftrightarrow random products of generators, e.g.

$$w_{20} = b^{-1}aa^{-1}baababbb^{-1}ab^{-1}a^{-1}bbb^{-1}b^{-1}b^{-1}a^{-1}$$
$$= a^{2}babab^{-1}a^{-1}b^{-1}a^{-1}$$

The Cayley graph of a finitely generated group is the graph with

- vertices: elements of the group
- edges: connect elements which differ by a generator

Simple random walk \leftrightarrow nearest neighbour random walk on Cay(F_2)

The nearest neighbour random walk on the four-valent tree:

Useful properties:

• Transient

 $\mathbb{P}(\text{random walk hits } v_0 \text{ finitely often}) = 1.$

- Convergence to ∂X .
- Linear progress, $\mathbb{E}(d(v_0, w_n)) \sim n$.

General setup: $G \curvearrowright X$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cayley graph for an infinite generating set $A = \{a^{\pm n}, b^{\pm 1}\}$:

Cayley graph for an infinite generating set $A = \{a^{\pm n}, b^{\pm 1}\}$:

Cayley graph for an infinite generating set $A = \{a^{\pm n}, b^{\pm n}\}$:

Cayley graph for an infinite generating set $A = \{a^{\pm n}, b^{\pm n}\}$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

G countable group, μ probability distribution on G.

 w_n sample path of length n:

$$w_n = g_1 g_2 \dots g_n$$

Step space: $(G, \mu)^{\mathbb{N}} \ni (g_1, g_2, g_3, \ldots)$ Path space: $(G^{\mathbb{N}}, \mathbb{P}) \ni (1, w_1, w_2, w_3, \ldots)$

Example: simple random walk on F_2

$$G = F_2, \qquad \mu(g) = \left\{ egin{array}{c} rac{1}{4} ext{ if } g \in \{a^{\pm 1}, b^{\pm 1}\} \ 0 ext{ else} \end{array}
ight.$$

[Gromov] A geodesic metric space (X, d) is δ -hyperbolic if every geodesic triangle is δ -thin, i.e. any side is contained in a δ -neighbourhood of the other two.

Examples: trees, hyperbolic space ...

Gromov hyperbolic group: Cayley graph has thin triangles.

Examples: free groups F_n , fundamental groups of closed hyperbolic manifolds.

Non-examples: groups containing \mathbb{Z}^2 .

[Gromov] A geodesic metric space (X, d) is δ -hyperbolic if every geodesic triangle is δ -thin, i.e. any side is contained in a δ -neighbourhood of the other two.

Examples: trees, hyperbolic space ...

Gromov hyperbolic group: Cayley graph has thin triangles.

Examples: free groups F_n , fundamental groups of closed hyperbolic manifolds.

Non-examples: groups containing \mathbb{Z}^2 .

Useful properties of (X, d) δ -hyperbolic spaces:

Gromov boundary ∂X : equivalence classes of geodesic rays.

Classification of isometries:

- elliptic: bounded orbits
- parabolic: unbounded orbits, au(g) = 0
- loxodromic: τ(g) > 0, two fixed points in ∂X, invariant axis, north-south dynamics.

Translation length:

$$\tau(g) = \lim_{n \to \infty} \frac{1}{n} d_X(x_0, g^n x_0)$$

We say a group G is *weakly hyperbolic* if G acts by isometries on a Gromov hyperbolic space (X, d) and is *non-elementary* if G contains two independent loxodromic elements.

Examples:

- Hyperbolic groups
- Relatively hyperbolic groups
- Mapping class groups of surfaces
- Out(*F_n*)
- Right Angled Artin Groups (RAAGs)
- Acylindrical groups

Non-examples: Abelian groups, lattices in higher rank Lie groups.

The mapping class group of a surface S is $\text{Diff}_+(S)/\text{isotopy}$

acts on the curve complex $\mathcal{C}(\Sigma)$.

- vertices: isotopy classes of simple closed curves.
- simplices: spanned by disjoint simple closed curves.

Finite dimensional, but not locally finite.

[Masur-Minsky] $C(\Sigma)$ is δ -hyperbolic.

The mapping class group of a surface S is $\text{Diff}_+(S)/\text{isotopy}$

acts on the curve complex $\mathcal{C}(\Sigma)$.

- vertices: isotopy classes of simple closed curves.
- simplices: spanned by disjoint simple closed curves.

Finite dimensional, but not locally finite.

[Masur-Minsky] $C(\Sigma)$ is δ -hyperbolic.

Thm [M-Tiozzo]: Let G be a countable group acting by isometries on a separable Gromov hyperbolic space X, and let μ be a non-elementary probability distribution on G. Then almost every sample path ($w_n x_0$) converges to a point in the Gromov boundary.

We say μ is *non-elementary* if $\langle \text{supp}(\mu) \rangle$ contains two independent loxodromic elements.

Orbit map: $G \rightarrow X$, $g \mapsto gx_0$.

separable: countable dense subset

Applications:

- Linear progress $\mathbb{P}(d_X(x_0, w_n x_0) \ge Ln) \to 1$ as $n \to \infty$. (L > 0)
- $\tau(w_n)$ grows linearly
- If $G \curvearrowright X$ is acylindrical then $(\partial X, \nu)$ is the Poisson boundary

Applications:

- [Rivin][Kowalski][M] Generic elements are loxodromic/pA in mapping class groups
- [Calegari-M] scl grows as n / log n in acylindrical groups
- [Lubotzky-M-Wu] Casson invariants for random homology spheres
- [Gekhtman-Taylor-Tiozzo] loxodromic are generic in Cayley graphs for *G* hyperbolic acting on *X* hyperbolic.
- [Haettel] Higher rank lattices have finite image in mapping class groups.

- [Hartnick-Sisto] Bounded cohomology of F_n
- [Gadre-M] generic pAs have trivalent singularities

Proof (locally finite case):

 X ∪ ∂X compact, P(X ∪ ∂X) compact, Cesaro averaging gives a μ-stationary probability measure on X ∪ ∂X.
 3. 4. ...

Problem: X not locally compact, $X \cup \partial X$ not necessarily compact. Solution: Use *horofunction compactification* \overline{X}^h

Horofunctions: $X \hookrightarrow C(X)$.

$$\rho \colon x \mapsto d_X(x, \cdot) - d_X(x, x_0)$$

Example: $\overline{\mathbb{R}}^h = \mathbb{R} \cup \{\pm \infty\}$

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q ()~.

Warning:

- C(X) topology of uniform convergence on *compact* sets
- $\rho(X)$ not necessarily open in \overline{X}^h
- $\overline{X}^h \setminus
 ho(X)$ not necessarily compact

$$\overline{X}^h = \overline{X}^h_{\textit{Finite}} \sqcup \overline{X}^h_\infty$$

local minimum map $\phi \colon \overline{X}^h_\infty \to \partial X$

