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e Random walks

e Random walks on the mapping class group

Theorem: A random walk on the mapping class group gives a
pseudo-Anosov element with asymptotic probability one.

e Random Heegaard splittings

Theorem: A random Heegaard splitting is hyperbolic with
asymptotic probability one.



A random walk on Z

At time t =0 start at wg =0

wes LWt 1 with probability 1/2
17wy — 1 with probability 1/2
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The nearest neighbour random walk on a (finite valence) graph:

e Start at a particular vertex at time 0.
e At time n jump to one of your nearest neighbours, chosen with
equal probability.

Random walks on groups:

Pick a (symmetric) generating set A.
The Cayley graph of a finitely generated group is the graph with

e vertices: elements of the group

e edges: connect elements which differ by a generator

The graph depends on the choice of generating set A, but any two
choices give quasi-isometric graphs.



Example of a Cayley graph:
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Key example: the nearest neighbour random walk on a Cayley
graph of the mapping class group.

e Start at the identity at time 0.
e At time n jump to one of your nearest neighbours, chosen with
equal probability.



More generally: pick a probability distribution 1 on G.
Consider the Markov chain with set G, and transition probabilities

p(x,y) = p(x"1y).

Time 0: start at identity.
Time 1: distributed according to p.
Time 2: distributed according to u? = convolution of x with itself.

p2() = p(y)u(y'x)

veG

Time n: distributed according to u”, n-fold convolution of y with
itself.



Path space: (G%+,P), probability space.
G”Z+ infinite product of G’s.

A sample path w € GZ+ is an infinite sequence of group elements
corresponding to the locations of the random walk.

Projection w,, : G%+ — G to the n-th factor is a random variable
which gives the location of the sample path at time n.

The distribution of w,, is given by u”.
[Kolmogorov] This determines P.

Key point: this enables us to talk about infinite length random
walks.



Example: PSL(2,Z)

Sample paths converge to the boundary with probability one.
This gives a measure on the boundary, called harmonic measure v.
v(X) = P(sample paths which converge to points in X)



This harmonic measure on S is not Lebesgue measure.

ai az

1 Y
— 1 +00...07...1...

ai+

at...

Sleo
Sl

®lw TS

Gl =S
~aiee 5~

el —— o]
ol — e
o —f— ool

ol ———— ol

—1



Convergence to the boundary works for:

matrix groups, e.g. SL(n,Z) [Furstenberg]
e random matrices are irreducible [Rivin, Kowalski]

d-hyperbolic groups [Kaimanovich-Woess|
e random elements are hyperbolic,
translation length tends to infinity

Mapping class groups, braid groups [Kaimanovich-Masur]
e random elements are pseudo-Anosov [M]



The mapping class group of a surface S is
{surface diffeomorphisms} /isotopy.

G = MCG(S) = Diff™(S)/Diff(S)

The mapping class group is finitely generated by Dehn twists.



The surface S may have boundary or punctures

b

The mapping class group of the n-punctured disc is also known as
the braid group.

Thurston's classification of surface homeomorphisms

The map fixes a disjoint collection of simple closed curves.

e Reducible:



e Periodic:

Sob

Some power of the map is isotopic to the identity.
e Pseudo-Anosov:

Everything else...



Useful facts about the mapping class group.

[Masur-Minksy] The mapping class group is weakly relative
hyperbolic.

G finitely generated by A, gives word metric on G (same as Cayley
graph metric).
G = G with word metric from an infinite generating set AU {H;}.

In this case H; = stab(«;), where «; are representatives of simple
closed curves under the action of G.

If G is d-hyperbolic then we say that G is weakly relatively
hyperbolic (with respect to {H;}).



Recall a metric space is d-hyperbolic if every geodesic triangle is
d-thin, i.e. any side is contained in a d-neighbourhood of the other
two.

Examples: hyperbolic space, trees, the complex of curves C(S).

[Masur-Minksy] show that the relative space Gis quasi-isometric
to the complex of curves.



The complex of curves is a simplicial complex.

e vertices: isotopy classes of simple closed curves.
e simplices: spanned by disjoint simple closed curves.
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Finite dimensional, but not locally finite.

[Masur-Minsky] the complex of curves is d-hyperbolic.



Isometries of d-hyperbolic spaces are

e elliptic, fix a point in the interior (periodic, reducible)
e parabolic (none of these)

e hyperbolic (pseudo-Anosov)

Gromov boundary: { set of quasi-geodesic rays }/ ~
Two rays are equivalent if they stay a bounded distance apart.

[Klarreich] The Gromov boundary of the complex of curves is Fin
the space of minimal foliations in PMF, Thurston's space of
projective measured foliations.

PMEF is a sphere of dimension 6g — 5, g = genus of S.
pseudo-Anosov maps act on C(S) U Fpin as translations along an

axis with a unique pair of fixed points, the attracting and repelling
fixed points.



[Kaimanovich-Masur, + Klarreich] A random walk on the mapping
class group converges almost surely to a uniquely ergodic foliation
in PMF, as long as the support of y is a non-elementary subgroup.
The resulting harmonic measure v on Fpin is non-atomic.

uniquely ergodic = minimal

non-elementary: the subgroup contains a pair of pseudo-Anosov
elements with distinct endpoints.

Recall v(X) = proportion of sample paths which converge into X.

v governs the long time behaviour of sample paths.



Theorem [Rivin, Kowalski]: The probability that w,(w) is
pseudo-Anosov tends to 1 as n — oo.

Consider the action on homology, i.e. map from G to Sp(2g,7Z).

[Casson-Bleiler] If image of g is irreducible, no roots of unity as
eigenvalues, characteristic polynomial not a power of a lower
degree polynomial, then g is pseudo-Anosov.

Theorem [M]: The probability that the translation length of w,(w)
on C(S) is at most K tends to zero as n — oo.

Requires support of i generates a non-elementary subgroup not
contained in a centralizer.

Translation length of g: lim %dc(s)(x,g”x).



Sketch of proof.

Observation: if X C G and limit set of X has (harmonic) measure
zero in Fin, then the random walk is transient on X. (A sample
path hits X finitely many times almost surely.)

Let R = elements of G of translation length at most K. Then
v(R)=1.

Let R, = k-dense elements of R, i.e. r € R such that there is
some other r’ € R such that dg(r,r') < k.

Claim: v(Rx) = 0.



P(wp(w) € R) = P(wp(w) € Rk) +P(w, € R\ R)
w) € Rk) — 0 as n — oo by transience.

o IP(
e P(wh(w) € R\ Rk) <1/k

True for all k implies P(wp(w)) — 0 as n — oo.



More details:

Rr = C(g), where word length of g at most k.
C(g) = centralizer of g, i.e. h € G such that gh = hg.

e g pseudo-Anosov: C(g) virtually cyclic, limit set is fixed points.
e g reducible: centralizer bounded diameter in @ limit set empty.

e g periodic: C(g) lower dimensional sphere.

[Nielsen] a finite cyclic subgroup of G fixes a point in Teichmiiller
space = set of hyperbolic structures on S.

=> finite cyclic groups realized by covering translations.

So fixed set is lower dimensional Teichmiiller space inside original
one, so limit set is a lower dimensional PMF inside original one.

[ distance reducing maps G — 7 (S) — G ]



Relative conjugacy bounds:

If a and b are conjugate in G then there is a conjugating word w
such that |w| < K(|3| + |b]).

[Masur-Minksy] Version for pseudo-Anosov elements using word
length.

This implies if g is conjugate to a short word s, and w is a shortest
conjugating word in the relative metric, then the path wsw™1 is a
quasi-geodesic path, where the quasi-geodesic constants depend on
the length of s.



wsw ! =r

s has bounded length, so thin triangles implies if w very long, then
a final segment of w fellow-travels with an initial segment of w™!.

So red path is a short conjugate of s, so could have chosen a
shorter conjugating word.

If r € Ry, then there is g of word length at most k such that
rg = r' € Ry, so Ry is a finite union of RN Rg.



Claim: RN Rg = C(g)

r=wsw ! and r' = w's'w'~!, paths are quasi-geodesic, so fellow
travel. Write w = xy, w’ = xy’, for y, y’ of bounded length.

x"1gx short group element, so conjugate by short z to g.
x"lgx = zgz7! = g(xz) = (xz)g = x close to C(g).



Random Heegaard splittings.

gluing map Wy,

CSORCED

M (wy,)

Theorem [M]: The probability that the splitting distance of M(w;,)
is at most K tends to zero as n tends to infinity.

Requires support of 1 generates a subgroup which is dense in the
boundary.

Given S as the boundary of a handlebody H, the disc set A is the
collection of simple closed curves which bound discs in H.



A Heegaard splitting has two handlebodies, with disc sets A and
wpA.

Splitting distance: minimum distance between A and w,A in C(S).

[T. Kobayashi;Hempel] If the splitting distance is more than two,
then M is irreducible, atoroidal and not Seifert fibered.

[Perelmann] Geometrization = M is hyperbolic.

Corollary: Probability M(w,,) is hyperbolic tends to 1 as n — co.



[Kerckhoff] Limit set of A has harmonic measure zero.
[Masur-Minsky| Disc set is quasi-convex.

Need to understand (joint) distribution of attracting and repelling
endpoints.



If g is pseudo-Anosov let A (g) be the attracting fixed point and
let A\™(g) be the repelling fixed point.

Define A\, : GZ+ — Frin X Frmin U D
by w — (AT (wh(w)), A~ (wh(w))) if wy(w) is pseudo-Anosov.

Claim: A\, — v XV as n — oo.

Reflected harmonic measure U is harmonic measure determined by
the random walk generated by the reflected measure

fi(g) = n(g™).

Halfspace: H(1,x) = {y € G | d(y,x) < d(y,1)}.



A (9)

If the translation length of g is bigger than K(9), then
A*(g) € H(1,g), and A~ (g) € H(1,g77).

So Ay ~ (wp, w, b).



D
H<1’ wQ_nlw")

P(wan(w) € H(1, wp(w))) — 1 as n — oo.
P(wy,(w) € H(L, s, wy(w))) — 1 as n — oo.

So (wan, wa,t) ~ (Wp, Wy, M wy).

If wop =s51...5,5041-..5n, then w, =s1...5s, and
-1 _ -1 -1 .
Wy, Wp = Sy ... S, 1, are independent.



