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Theorem: Let M be a closed hyperbolic 3-manifold, with a
sequence of finite covers of bounded Heegaard genus. Then M is
virtually fibered.

• 3-manifold: topological space locally homeomorphic to ordinary
Euclidean space R3. Examples:

- 3-ball B3 (has boundary)

glue
- 3-sphere B3 ∪ B3 (closed = compact, no boundary)



- S1 × S1 × S1, 3-torus

- glue some tetrahedra together such that links of vertices are
2-spheres (every three manifold can be obtained this way)



• hyperbolic: M = H3/Γ, Γ < Isom(H3) discrete cocompact.

otagon

Identifying opposite sides of an octagon gives a genus two surface.
This has a metric of negative curvature.



The Poincaré disc model:

All angels/devils are the same size in the hyperbolic metric.
Straight lines are circles perpendicular to the boundary.



Regular octagons may have arbitrarily small angles:

so the hyperbolic plane may be tiled by regular octagons.
In three dimensions, the Poincaré model is a ball formed by
rotating the Poincaré disc about a diameter. There are various
tilings by polyhedra which give hyperbolic 3-manifolds.



• Heegaard splitting: M = H1 ∪ H2, Hi = handlebody = regular
neighbourhood of a graph in R3:

Graph is called a spine for the handlebody.

Every 3-manifold has a Heegaard splitting, in fact many Heegaard
splittings.

We will normally be interested in a choice of minimal genus
Heegaard splitting for the manifold.



• fibered 3-manifold: S closed surface, φ : S → S , take S × I and
glue top to bottom by φ. Mφ = S × I/ ∼, (x , 1) ∼ (φ(x), 0)

Fact: if the gluing map is not periodic or reducible, then the
resulting fibered manifold is hyperbolic.

reducible = fixes a disjoint collection of simple closed curves



• virtually fibered: some finite cover is fibered

Conjecture [Thurston]: every hyperbolic 3-manifold is virtually
fibered

Finite covers: M̃ → M local homeomorphism, globally of degree d

Finite covers ↔ finite index subgroups

Examples:



[Lubotzky] number of subgroups grows exponentially in d ,
proportion of congruence covers → 0 as index →∞

Congruence covers:

Isom(H3) = PSL(2, C), so M = H3/Γ, Γ discrete cocompact
subgroup.

In fact Γ ⊂ PSL(2,A), A some algebraic field, so can reduce mod
p, PSL(2,A)→ PSL(2, Fp).

This gives infinitely many covers.



Let Mi be a finite cover of M of degree di . The pre-image of a
Heegaard surface of M in Mi is a Heegaard surface for Mi , but
there may be Heegaard splittings of lower genus. Let χi be the
Euler characteristic of the minimal genus Heegaard surface of Mi .

Definition: the Heegaard gradient of a collection of covers Mi is
lim inf χi/di .



Example: cyclic covers of fibered manifolds have bounded
Heegaard genus.

Red surface = two copies of a fiber tubed together. Red surface is
a Heegaard splitting surface.
Complementary regions to red surface are
(surface with boundary) ×I = handlebody.

= =



Theorem: [Lackenby] Let M be a 3-manifold with a sequence of
regular covers Mi of degree di , with Heegaard surfaces of Euler
characteristic χi . If χi/

4
√

di → 0 then M is virtually fibered.

Lackenby, using [Lubotzky, Sarnack] showed Heegaard genus grows
linearly in congruence covers Γ→ PSL(2, Fq) of arithmetic
manifolds. [Long-Lubotzky-Reid] general case.

[Ichihara] A Seifert fibered 3-manifold has zero Heegaard gradient
iff it is virtually fibered.

Theorem: M closed hyperbolic 3-manifold with a sequence of finite
covers with
• bounded Scharlemann-Thompson width
• Heegaard gradient χi/di → 0
then all but finitely many Mi are fibered over S1 or I ∗

Independently announced by Agol



• Scharlemann-Thompson width:

Heegaard splitting = handle decomposition

0-handle B3

1-handle B1 × B2

2-handle B2 × B1

3-handle B3

first handlebody = 0-handle ∪ 1-handles
second handlebody = 2-handles ∪ 3-handle



Think of the handles as being glued on in some order.

May be able to re-arrange the handles, i.e. add some two handles
before adding all of the 1-handles. Width at handle t is (number of
1-handles) - (number of 2-handles). Width of splitting is max
width over all handles.

Note this differs from original definition which involved writing
down the width for each handle addition in descending order and
ordering these lexicographically.



Splitting of genus g has width at most g .

handlebody

ompression body
Compression body: take S × I and glue on 2-handles to one side
only (lower side), cap off 2-spheres with 3-balls. Call upper side
disjoint from 2-handles ∂+, other boundary components ∂−.



Proof (of main theorem):

Sweepouts: f : S × I → M,
f∗ : H3(S × I , ∂)→ H3(M, spines), isomorphism

Simplicial sweepouts [Bachman, Cooper, White] [Canary,
Thurston, et al]:

A sweepout such that S × t has a triangulation, which varies
continuously with t, and the image of each triangle is a geodesic
triangle (may be immersed, degenerate).



Assume spines have one vertex. Homotope spines to have vertex at
same point, and homotope edges to be geodesic arcs.

They are not loops as homotoping rel fixed basepoint.

Triangulate S × 0 with one-vertex triangulation such that each
edge is mapped either to the vertex, or exactly once around a
single edge of spine of H1.

Triangulate S × 1 such that each edge is mapped either to the
vertex, or exactly once around a single edge of spine of H2.

Triangulations of S may be very different.



Flip complex:

- vertices: one-vertex triangulations of S up to isotopy
- edges: connect two triangulations if they are connected by a flip

[Hatcher-Thurston] flip complex is connected

Choose a (shortest) path of flips connecting the triangulation of
S × 0 to the triangulation of S × 1.



Construct continuous family of triangulations, with bounded
number of triangles.

S0 St S1

Straighten triangles in hyperbolic metric by homotopies fixing the
vertex of the spine.

f : S × I → M, each S × t triangulated, and image of each triangle
is a geodesic triangle.

Image is negatively curved away from vertex of spine, as extra
vertex has angle > 2π.



Total number of triangles bounded (at most 2g).

Area of each hyperbolic triangle is at most π.

Get sweepout by immersed surfaces with area bound, but may
have large diameter

Want: sweepout by surfaces of bounded diameter.



Definition: Generalised sweepout.

Σ 3-manifold with boundary
f : (Σ, ∂Σ)→ (M, spines) degree 1
h : Σ→ R Morse function

Apply local modifications to sweepout surfaces with large diameter:

old new
Cut out annulus ×I (= solid torus, with particular height function)
on the right and replace it with the surfaces on the left (= solid
torus with particular height function).

Local move doesn’t change degree.



Metric version:

Negatively curved surface has large diameter ⇒ there is a short
curve.

Injectivity radius of M = half length of shortest essential curve = ε
say. Injectivity radius of cover Mi > injectivity radius of M.

So if a simple closed curve in St has length 6 ε, then it is
inessential in Mi .

Choose annular neighbourhoods of short curves which are disjoint.
Key points:
- universal cover of S\ basepoint is CAT(-1)
- annuli vary continuously
- the components of the complement have bounded diameter



Get generalised sweepout by immersed surfaces with diameter
bound and genus bound.

Volume of cover = d×(volume of M), and large volume implies
large diameter. In fact as Heegaard gradient χi/di → 0, there is a
sequence of compression bodies in the Mi whose volume becomes
arbitrarily large.

For Mi of large degree there is a compression body in Mi with
many disjoint nested sweepout surfaces.



Nested: even though the sweepout surfaces are immersed, it still
makes sense to say one surface separates another from the
boundary of the handlebody, by taking algebraic intersection
number.

Assume surfaces have the same genus.

We will now show nested ⇒ homotopic



Lemma: Let S1 and S2 be nested surfaces in a compression body
obtained by surgering ∂+ along collections of discs ∆1 and ∆2,
and assume S2 separates S1 from ∂+. Then we may choose the
compressing discs such that ∆2 ⊂ ∆1.

Proof: Suppose D is not a compressing disc for ∂+ that does not
lie in any family of compressing discs ∆1 which may be used to
produce S1. Then S1 ∩ D 6= ∅, so there is at least one simple
closed curve of intersection. But S2 separates S1 from ∂+, so there
must also be intersections between D and S2, so D is not a
compressing disc for S2.

∂+

D
S2

S!



Replace surfaces Si with S ′
i so that the homotopy from S ′

n to S ′
i is

disjoint from S ′
j for j < i .

S
′
n

S
′

1 S
′

i

[Gabai] Singular norm ⇒ embedded surfaces

We can replace the immersed surfaces with embedded surfaces in
the same homology class, and the new surfaces will be contained in
a regular neighbourhood of the original immersed surface, and the
genus will be no larger.



Homotopic ⇒ isotopic

Take f : S × I to be the homotopy - we can make it have bounded
diameter by construction above.

Change collection of surfaces if necessary such that homotopy from
S ′

n to S ′
k does not hit S ′

j for j < k.

Let T and T ′ be embedded surfaces, which together bound Y in
the compression body.

Y

T ′

T

S ′

1

S ′

n

S × I

φ

φ−1(Y )



Consider the pre-image of Y in the homotopy from S ′
1 to S ′

n,
which we may assume is degree one onto Y .

If the boundary components of the pre-image in S × I are
incompressible, we may change the homotopy to compress them,
and if there are any S2 components, again we may change the
homotopy to remove them.

We may then make the pre-images horizontal in S × I .

As Y has incompressible boundaries, which are homotopic, and Y
is homotopy equivalent to a surface, Waldhausen implies Y is a
product.



Finiteness ⇒ virtual fiber

A choice of fundamental domain for M gives a tiling of any cover
Mi .

Each parallel surface Ti is contained in finitely many fundamental
domains. As there are only finitely many ways of gluing finitely
many fundamental domains together, if there are enough Ti , there
are two that hit the same pattern of fundamental domains, so we
may cut the manifold Mi along two of these collections of
fundamental domains and reglue to obtain a fibered manifold.


