Problem 1. Every isometry of \mathbf{R}^2 is either a rotation, translation, or a glide reflection (with possibly zero "glide"). Which type of isometry is each of the ones described below? Explain how you know.

- (a) The composition of two translations $t_{\mathbf{v}} \circ t_{\mathbf{w}}$.
- (b) The same glide reflection performed twice in a row.
- (c) Rotation followed by translation: $t_{\mathbf{v}} \circ r_{\mathbf{0},\theta}$.

Problem 2.

(a) Let $r_{\pi/2}$ be the rotation of \mathbf{R}^2 about the origin by $\pi/2$. Let R be the reflection in the x-axis. Show that these two isometries do not commute.

[In general, unless the rotation r fixes the line ℓ , r does not commute with the reflection R_{ℓ} .]

- (b) Give an example of two rotations whose product is a translation, and prove this claim for your example [consider three points].
- (c) Show that reflection in two parallel lines is a translation $t_{\mathbf{v}}$ for any points in \mathbf{R}^2 [consider various cases]. How does \mathbf{v} depend on the lines?

Problem 3. Prove each of the following claims, which together show that every isometry f of \mathbf{R}^2 is determined by the images of any three non-collinear points A, B, C.

- (a) Any point P is uniquely determined by the three distances |PA|, |PB|, |PC|.
- (b) |f(P)f(A)| = |PA|, |f(P)f(B)| = |PB|, |f(P)f(C)| = |PC|.
- (c) f(A), f(B), f(C) are non-collinear.
- (d) f(P) is uniquely determined by f(A), f(B), f(C).

Problem 4. In the figure below, $\triangle abc \cong \triangle ABC$. Suppose f is an isometry that takes $\triangle abc$ to $\triangle ABC$.

- (a) By general principles, how can you tell that f is a rotation?
- (b) Find center P and angle θ such that $f = r_{P,\theta}$.

Problem 5. Problems for Chapter 4: 4.1.3-4.1.4, 4.2.1-4.2.2, 4.3.2-4.3.5, 4.4.1-4.4.2, 4.5.1-4.5.3

Problem 6. Linear transformations in \mathbf{R}^2 :

- (a) Which isometries are linear transformations?
- (b) Show that the midpoint of any line segment is preserved by a linear transformation.
- (c) Use vectors to prove that linear transformations preserve lines, and that they preserve parallel lines.
- (d) Use matrices to prove that a product of rotations about $\mathbf{0}$ is also a rotation about $\mathbf{0}$.

Problem 7. Spherical geometry:

- (a) Given that a reflection of \mathbf{R}^3 in a plane is an isometry of R^3 , explain why a reflection of S^2 in a great circle is an isometry of S^2 .
- (b) Use vectors to show that the antipodal map takes great circles to great circles. [Hint: every great circle lies in a plane determined by its normal vector **n**.]
- (c) Explain why the "three reflections theorem" for S^2 implies that all isometries of S^2 are restrictions of isometries of \mathbf{R}^3 that fix **0**.