Problem 1. Every isometry of \mathbf{R}^{2} is either a rotation, translation, or a glide reflection (with possibly zero "glide"). Which type of isometry is each of the ones described below? Explain how you know.
(a) The composition of two translations $t_{\mathbf{v}} \circ t_{\mathbf{w}}$.
(b) The same glide reflection performed twice in a row.
(c) Rotation followed by translation: $t_{\mathbf{v}} \circ r_{\mathbf{0}, \theta}$.

Problem 2.

(a) Let $r_{\pi / 2}$ be the rotation of \mathbf{R}^{2} about the origin by $\pi / 2$. Let R be the reflection in the x-axis. Show that these two isometries do not commute.
[In general, unless the rotation r fixes the line ℓ, r does not commute with the reflection R_{ℓ}.]
(b) Give an example of two rotations whose product is a translation, and prove this claim for your example [consider three points].
(c) Show that reflection in two parallel lines is a translation $t_{\mathbf{v}}$ for any points in \mathbf{R}^{2} [consider various cases]. How does \mathbf{v} depend on the lines?

Problem 3. Prove each of the following claims, which together show that every isometry f of \mathbf{R}^{2} is determined by the images of any three non-collinear points A, B, C.
(a) Any point P is uniquely determined by the three distances $|P A|,|P B|,|P C|$.
(b) $|f(P) f(A)|=|P A|,|f(P) f(B)|=|P B|,|f(P) f(C)|=|P C|$.
(c) $f(A), f(B), f(C)$ are non-collinear.
(d) $f(P)$ is uniquely determined by $f(A), f(B), f(C)$.

Problem 4. In the figure below, $\triangle a b c \cong \triangle A B C$. Suppose f is an isometry that takes $\triangle a b c$ to $\triangle A B C$.
(a) By general principles, how can you tell that f is a rotation?
(b) Find center P and angle θ such that $f=r_{P, \theta}$.

Problem 5. Problems for Chapter 4:
4.1.3-4.1.4, 4.2.1-4.2.2, 4.3.2-4.3.5, 4.4.1-4.4.2, 4.5.1-4.5.3

Problem 6. Linear transformations in \mathbf{R}^{2} :
(a) Which isometries are linear transformations?
(b) Show that the midpoint of any line segment is preserved by a linear transformation.
(c) Use vectors to prove that linear transformations preserve lines, and that they preserve parallel lines.
(d) Use matrices to prove that a product of rotations about $\mathbf{0}$ is also a rotation about 0 .

Problem 7. Spherical geometry:
(a) Given that a reflection of \mathbf{R}^{3} in a plane is an isometry of R^{3}, explain why a reflection of S^{2} in a great circle is an isometry of S^{2}.
(b) Use vectors to show that the antipodal map takes great circles to great circles. [Hint: every great circle lies in a plane determined by its normal vector n.]
(c) Explain why the "three reflections theorem" for S^{2} implies that all isometries of S^{2} are restrictions of isometries of \mathbf{R}^{3} that fix $\mathbf{0}$.

