Sample problems for Linear Algebra, Spring 2016, Chapters 6-7

Problem 1. Find a 2×2 matrix A that has eigenvalues $\lambda_{1}=-1$ and $\lambda_{2}=2$, with corresponding eigenvectors:

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
5 \\
-3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
3 \\
-2
\end{array}\right]
$$

Problem 2. If possible, diagonalize the following matrices:

$$
A=\left[\begin{array}{ccc}
5 & 0 & 0 \\
-4 & 3 & 0 \\
1 & -3 & -2
\end{array}\right], \quad B=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-2 & -2 & -1 \\
0 & 0 & -1
\end{array}\right]
$$

Problem 3. Compute A^{100} for $A=\left[\begin{array}{ll}5 & -4 \\ 2 & -1\end{array}\right]$.

Problem 4.

(a) Prove that if A is diagonalizable, then A^{T} is diagonalizable.
(b) Prove that if the eigenvectors of A form an orthogonal basis (A is "orthogonally diagonalizable"), then A is symmetric.
(c) Suppose that A is a 2×2 matrix with eigenvalues $\lambda_{1} \neq \lambda_{2}$, with corresponding eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2}. Let $B=\left[\mathbf{v}_{1} \mathbf{v}_{2}\right]$. Prove that $\operatorname{det}(B) \neq 0$.

Problem 5. Let T_{1}, T_{2}, T_{3} be linear transformations given by $T_{i}(\mathbf{x})=A_{i} \mathbf{x}$ as follows.
For each T_{i}, determine whether it is one-to-one, onto, both or neither.

$$
A_{1}=\left[\begin{array}{cc}
4 & -1 \\
-2 & 2 \\
0 & 3
\end{array}\right], \quad A_{2}=\left[\begin{array}{ccc}
-1 & 3 & 2 \\
4 & -12 & -8
\end{array}\right] \quad A_{3}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 2 & -1
\end{array}\right]
$$

Problem 6. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear transformation.
(a) Prove that if T is one-to-one, then T is onto.
(b) Prove that if T is onto, then T is one-to-one.

Problem 7. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation.
(a) Prove that if $T\left(\mathbf{v}_{1}\right)$ and $T\left(\mathbf{v}_{2}\right)$ are linearly independent, then \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent.
(b) Give an example such that \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent, but $T\left(\mathbf{v}_{1}\right)$ and $T\left(\mathbf{v}_{2}\right)$ are not linearly independent.

Problem 8. Describe all linear transformations $T: \mathbf{R} \rightarrow \mathbf{R}$.
Problem 9. Let $T: V \rightarrow W$ be a linear transformation. Prove $\operatorname{ker}(T)$ is subspace of V.
Problem 10. Answer the numerical WebWork questions about linear transformations!

