Sample problems for Linear Algebra, Spring 2016, Exam 3

Problem 1.

$$
W=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
-1 \\
0
\end{array}\right]\right\} \quad \mathbf{b}=\left[\begin{array}{l}
12 \\
18 \\
12 \\
18
\end{array}\right]
$$

(a) Find a basis for W^{\perp} in \mathbf{R}^{4}.
(b) Find the projection \mathbf{p} onto W of \mathbf{b}; i.e., $\mathbf{p}=\operatorname{proj}_{W}(\mathbf{b})$.
(Note this is an orthogonal basis of W.)
(c) Find $\mathbf{e}=\mathbf{b}-\mathbf{p}$. Verify that \mathbf{e} is in W^{\perp}.
(d) Write \mathbf{e} as a linear combination of your basis vectors from part (a).

Problem 2.

$$
W=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right]\right\} \quad \mathbf{b}=\left[\begin{array}{l}
12 \\
18 \\
12 \\
18
\end{array}\right]
$$

Find the projection \mathbf{p} onto W of \mathbf{b}; i.e., $\mathbf{p}=\operatorname{proj}_{W}(\mathbf{b})$.
(Note this is NOT an orthogonal basis of W.)
(a) Solve for \hat{x}, with $A^{T} A \hat{x}=A^{T} \mathbf{b}$.
(b) Solve for $\mathbf{p}=A \hat{x}$.
(c) Find $\mathbf{e}=\mathbf{b}-\mathbf{p}$. Verify that \mathbf{e} is in W^{\perp}.

Problem 3. Find the best fit line using the least squares method for these points:

$$
(-1,1),(1,2),(3,4)
$$

Problem 4. (a) Suppose $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are non-zero orthogonal vectors in \mathbf{R}^{n}. Show that $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent.
(b) Let Q be any orthogonal matrix. Show that Q preserves length; i.e., $\|Q \mathbf{x}\|=\|\mathbf{x}\|$.

Problem 5. Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ be orthonormal vectors in \mathbf{R}^{3}. Let $A=\left[\begin{array}{ll}\mathbf{v}_{1} & \mathbf{v}_{2} \mathbf{v}_{3}\end{array}\right]$. Find all possible values of the following determinants. Justify.
(a) Find A^{-1}.
(b) $\operatorname{det}\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]$
(c) $\operatorname{det}\left[\mathbf{v}_{1}+\mathbf{v}_{2} \mathbf{v}_{2}+\mathbf{v}_{3} \mathbf{v}_{3}+\mathbf{v}_{1}\right]$

Problem 6.

$$
S=\left\{\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right]\right\}
$$

(a) Compute a determinant to show that S is a basis for \mathbf{R}^{3}. Justify.
(b) Use the Gram-Schmidt method to find an orthonormal basis.

Problem 7. Let A and B be $n \times n$ matrices.
(a) If $A^{2}=A$, what are the possible values of $\operatorname{det}(A)$?
(b) If $A B$ is invertible, is $B A$ invertible?
(c) If all cofactors of A are zero, is A invertible?
(d) If $\operatorname{det}(A)=0$, what is the possible rank of A ?

Problem 8.

$$
A=\left[\begin{array}{llll}
x & x & x & x \\
x & a & b & c \\
x & d & e & f \\
x & g & h & i
\end{array}\right]
$$

(a) $\operatorname{det} A$ is a polynomial in x. Without computing $\operatorname{det} A$, what is the degree of the polynomial? Justify using permutations, and then using cofactors.
(b) If the bottom 3×3 matrix is the identity matrix, which values of x give $\operatorname{det} A=0$?

Problem 9. Let P be the plane in \mathbf{R}^{3} given by $3 x+2 y-z=0$.
(a) Find a basis for the subspace P in \mathbf{R}^{3}.
(b) Find a basis for the orthogonal complement P^{\perp}. Justify using a nullspace computation.
(c) Find a basis for the orthogonal complement P^{\perp}. Justify using the cross product.

Problem 10.

$$
S=\left\{\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
7 \\
3 \\
2
\end{array}\right]\right\}
$$

(a) Show that the vectors in S are coplanar.
(b) If A is a matrix with these columns, give the dimensions of the four fundamental subspaces of A.

Problem 11. Solve the following linear system using Cramer's Rule:

$$
\left\{\begin{array}{l}
2 x+y+z=3 \\
x-y-z=0 \\
x+2 y+z=0
\end{array}\right.
$$

