Sample problems for Linear Algebra, Spring 2016, Exam 2

Problem 1.

$$A = \begin{bmatrix} 1 & 1 & 0 & -2 & 3 \\ 0 & -1 & 1 & 3 & 1 \\ 2 & -1 & 3 & 5 & 9 \end{bmatrix}$$

(a) Find the reduced row echelon form for A.

- (b) Find the dimensions of the four fundamental spaces of A.
- (c) Find a basis for each of the four fundamental spaces of A.
- (d) Find the complete solution to $A\mathbf{x} = [1, 1, 1]^T$.

Problem 2.

$$S = \left\{ \left[\begin{array}{c} 2\\1 \end{array} \right], \left[\begin{array}{c} 1\\2 \end{array} \right] \right\}$$

- (a) Show that S is a basis for \mathbb{R}^2 .
- (b) Express $\begin{bmatrix} 0\\1 \end{bmatrix}$ as a linear combination of these basis vectors.

Problem 3. Let X and Y be the following sets of vectors:

$$X = \left\{ \begin{bmatrix} 2\\1\\-3 \end{bmatrix}, \begin{bmatrix} -1\\2\\2 \end{bmatrix} \right\}, \qquad Y = \left\{ \begin{bmatrix} 2\\1\\-3 \end{bmatrix}, \begin{bmatrix} -1\\2\\2 \end{bmatrix}, \begin{bmatrix} 0\\5\\1 \end{bmatrix}, \begin{bmatrix} 0\\3\\3 \end{bmatrix} \right\}$$

(a) Are the vectors in X linearly independent? Justify.

- (b) Do the vectors in X span \mathbb{R}^3 ? Justify.
- (c) Find a subset of X which is a basis for $\operatorname{span}(X)$. Justify.
- (d) Are the vectors in Y linearly independent? Justify.
- (e) Do the vectors in Y span \mathbf{R}^3 ? Justify.
- (f) Find a subset of Y which is a basis for $\operatorname{span}(Y)$. Justify.
- **Problem 4.** (a) Let S be a spanning set for \mathbf{R}^{100} which is not a basis of \mathbf{R}^{100} . How many vectors can S contain?
- (b) Let S be a set of linearly independent vectors in \mathbf{R}^{100} which is not a basis of \mathbf{R}^{100} . How many vectors can S contain?
- (c) Let v be a vector in \mathbf{R}^{100} . Show that the set of all vectors perpendicular to v forms a subspace of \mathbf{R}^{100} .

Problem 5. Suppose A is an $m \times n$ matrix such that

$$A\mathbf{x} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 has no solutions, and $A\mathbf{x} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ has a unique solution.

- (a) Find the possible values of m, n, and the rank r of A.
- (b) Find all solutions to $A\mathbf{x} = 0$. Justify.
- (c) Give an example of such a matrix A.

Problem 6. Suppose A can be reduced to

$$R = \left[\begin{array}{rrrrr} 1 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right]$$

- (a) Find the dimensions of the four fundamental spaces of A.
- (b) Find a basis for each of the four fundamental spaces of A. State if there is not enough information to answer.

Problem 7. The following matrix depends on *c*:

$$A = \left[\begin{array}{rrrr} 1 & 1 & 2 & 4 \\ 3 & c & 2 & 8 \\ 0 & 0 & 2 & 2 \end{array} \right]$$

- (a) For each c find a basis for the column space of A.
- (b) For each c find a basis for the nullspace of A.
- (c) For each c find the complete solution to $A\mathbf{x} = \begin{bmatrix} 1 \\ c \\ 0 \end{bmatrix}$.

Problem 8. Suppose A is an $m \times n$ matrix with rank r. How are m, n, and r related, and what is the nullspace of A in the following situations:

- (a) $A\mathbf{x} = \mathbf{b}$ has a unique solution.
- (b) There are no solutions.
- (c) There are infinitely many solutions.

(d) All solutions to
$$A\mathbf{x} = \mathbf{b}$$
 have the form $\mathbf{x} = \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix} + t \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$.

Problem 9. Suppose the columns of a 5×5 matrix A are a basis for \mathbb{R}^5 . Explain why the following are true:

- (a) The only solution to $A\mathbf{x} = 0$ is $\mathbf{x} = 0$.
- (b) $A\mathbf{x} = \mathbf{b}$ always has a solution.
- (c) The rows of A are also a basis for \mathbf{R}^5 .

Problem 10. Suppose A is an $m \times n$ matrix. Explain why the following are impossible:

(a) The column space of A has basis $\begin{bmatrix} 1\\1\\3 \end{bmatrix}$ and the nullspace of A has basis $\begin{bmatrix} 3\\1\\1 \end{bmatrix}$.

(b) The basis for both the row space and the column space of A is $S = \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \right\}$

- (c) A has a row $\mathbf{v} = (1, 0, -1)$ and \mathbf{v} is in the nullspace of A.
- (d) $A\mathbf{x} = \mathbf{b}$ has no solutions, and $A^T \mathbf{y} = 0$ has a unique solution $\mathbf{y} = 0$.