Sample problems for Linear Algebra, Spring 2016, Exam 2

Problem 1.

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 0 & -2 & 3 \\
0 & -1 & 1 & 3 & 1 \\
2 & -1 & 3 & 5 & 9
\end{array}\right]
$$

(a) Find the reduced row echelon form for A.
(b) Find the dimensions of the four fundamental spaces of A.
(c) Find a basis for each of the four fundamental spaces of A.
(d) Find the complete solution to $A \mathrm{x}=[1,1,1]^{T}$.

Problem 2.

$$
S=\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\}
$$

(a) Show that S is a basis for \mathbf{R}^{2}.
(b) Express $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ as a linear combination of these basis vectors.

Problem 3. Let X and Y be the following sets of vectors:

$$
X=\left\{\left[\begin{array}{c}
2 \\
1 \\
-3
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right]\right\}, \quad Y=\left\{\left[\begin{array}{c}
2 \\
1 \\
-3
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
5 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
3 \\
3
\end{array}\right]\right\}
$$

(a) Are the vectors in X linearly independent? Justify.
(b) Do the vectors in X span \mathbf{R}^{3} ? Justify.
(c) Find a subset of X which is a basis for $\operatorname{span}(X)$. Justify.
(d) Are the vectors in Y linearly independent? Justify.
(e) Do the vectors in Y span \mathbf{R}^{3} ? Justify.
(f) Find a subset of Y which is a basis for $\operatorname{span}(Y)$. Justify.

Problem 4. (a) Let S be a spanning set for \mathbf{R}^{100} which is not a basis of \mathbf{R}^{100}. How many vectors can S contain?
(b) Let S be a set of linearly independent vectors in \mathbf{R}^{100} which is not a basis of \mathbf{R}^{100}. How many vectors can S contain?
(c) Let \mathbf{v} be a vector in \mathbf{R}^{100}. Show that the set of all vectors perpendicular to \mathbf{v} forms a subspace of \mathbf{R}^{100}.
Problem 5. Suppose A is an $m \times n$ matrix such that

$$
A \mathbf{x}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \text { has no solutions, and } A \mathbf{x}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \text { has a unique solution. }
$$

(a) Find the possible values of m, n, and the rank r of A.
(b) Find all solutions to $A \mathrm{x}=0$. Justify.
(c) Give an example of such a matrix A.

Problem 6. Suppose A can be reduced to

$$
R=\left[\begin{array}{lllll}
1 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find the dimensions of the four fundamental spaces of A.
(b) Find a basis for each of the four fundamental spaces of A. State if there is not enough information to answer.

Problem 7. The following matrix depends on c :

$$
A=\left[\begin{array}{llll}
1 & 1 & 2 & 4 \\
3 & c & 2 & 8 \\
0 & 0 & 2 & 2
\end{array}\right]
$$

(a) For each c find a basis for the column space of A.
(b) For each c find a basis for the nullspace of A.
(c) For each c find the complete solution to $A \mathbf{x}=\left[\begin{array}{l}1 \\ c \\ 0\end{array}\right]$.

Problem 8. Suppose A is an $m \times n$ matrix with rank r. How are m, n, and r related, and what is the nullspace of A in the following situations:
(a) $A \mathbf{x}=\mathbf{b}$ has a unique solution.
(b) There are no solutions.
(c) There are infinitely many solutions.
(d) All solutions to $A \mathbf{x}=\mathbf{b}$ have the form $\mathbf{x}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.

Problem 9. Suppose the columns of a 5×5 matrix A are a basis for \mathbf{R}^{5}. Explain why the following are true:
(a) The only solution to $A \mathbf{x}=0$ is $\mathbf{x}=0$.
(b) $A \mathbf{x}=\mathbf{b}$ always has a solution.
(c) The rows of A are also a basis for \mathbf{R}^{5}.

Problem 10. Suppose A is an $m \times n$ matrix. Explain why the following are impossible:
(a) The column space of A has basis $\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]$ and the nullspace of A has basis $\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]$.
(b) The basis for both the row space and the column space of A is $S=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]\right\}$
(c) A has a row $\mathbf{v}=(1,0,-1)$ and \mathbf{v} is in the nullspace of A.
(d) $A \mathbf{x}=\mathbf{b}$ has no solutions, and $A^{T} \mathbf{y}=0$ has a unique solution $\mathbf{y}=0$.

