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Mahler measure and the Vol-Det Conjecture

Abhijit Champanerkar, Ilya Kofman and Matilde Laĺın

Abstract

The Vol-Det Conjecture relates the volume and the determinant of a hyperbolic alternating link
in S3. We use exact computations of Mahler measures of two-variable polynomials to prove the
Vol-Det Conjecture for many infinite families of alternating links.

We conjecture a new lower bound for the Mahler measure of certain two-variable polynomials
in terms of volumes of hyperbolic regular ideal bipyramids. Associating each polynomial to a
toroidal link using the toroidal dimer model, we show that every polynomial which satisfies this
conjecture with a strict inequality gives rise to many infinite families of alternating links satisfying
the Vol-Det Conjecture. We prove this new conjecture for six toroidal links by rigorously
computing the Mahler measures of their two-variable polynomials.

1. Introduction

The deep connections between the Mahler measure of two-variable polynomials and hyperbolic
volume have been investigated by several authors (see, for example, [7–9, 24, 26, 29]). The
following examples illustrate some of the remarkable relationships that have been discovered:
Let K be the figure-eight knot, with A-polynomial A(L,M) [20], and let p(z, w) be the
characteristic polynomial of the toroidal dimer model on the hexagonal lattice [27]. Let m(P )
denote the logarithmic Mahler measure of a two-variable polynomial P , and let vol(K) denote
the hyperbolic volume of S3 −K. Then,

vol(K) = 2πm(1 + x + y) =
3
√

3
2

L(χ−3, 2), (1.1)

vol(K) = πm(A(L,M)) = πm(M4 + L(1 −M2 − 2M4 −M6 + M8) − L2M4), (1.2)

vol(K) =
2π
5

m(p(z, w)) =
2π
5

m
(

6 − w − 1
w

− z − 1
z
− z

w
− w

z

)
. (1.3)

Equation (1.1), a famous result of Smyth [35], was the first instance where Mahler measure,
hyperbolic volume and special values of L-functions were related. Equation (1.2), discovered
by Boyd [7] and later generalized by Boyd and Rodriguez–Villegas [8, 9], is an example of how
Mahler measures of A-polynomials, which are invariants of cusped hyperbolic 3-manifolds, are
related to sums of hyperbolic volumes of 3-manifolds using regulators on algebraic curves.
Equation (1.3), discovered by Kenyon, arose from his study of the entropy of toroidal dimer
models [27].

The Vol-Det Conjecture relates the volume and determinant of a hyperbolic alternating
link in S3. In this paper, we use exact computations of Mahler measures of two-variable
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MAHLER MEASURE AND THE VOL-DET CONJECTURE 873

polynomials to prove the Vol-Det Conjecture for many infinite families of alternating links.
Specifically, we formulate a conjectured inequality for toroidal links (Conjecture 1) that relates
hyperbolic geometry, Mahler measure and toroidal dimer models. We then prove that every
toroidal link which satisfies Conjecture 1 with a strict inequality gives rise to many infinite
families of alternating links satisfying the Vol-Det Conjecture. We prove Conjecture 1 for six
toroidal links by explicitly computing the Mahler measures of two variable polynomials using
a technique developed by Boyd and Rodriguez–Villegas. In particular, we give the complete
proof of equation (1.3). The motivation for Conjecture 1 came from studying the hyperbolic
geometry of biperiodic alternating links in [17].

1.1. Main Conjecture

Let I = (−1, 1). Let L be a link in the thickened torus T 2 × I with an alternating diagram on
T 2 × {0}, projected onto the 4-valent graph G(L). The diagram is cellular if the complementary
regions are disks, which are called the faces of L or of G(L). When lifted to the universal cover
of T 2 × I, the link L becomes a biperiodic alternating link L in R2 × I, such that L = L/Λ
for a two-dimensional lattice Λ acting by translations of R2. We will refer to L as a link, even
though it has infinitely many components homeomorphic to R or S1. The faces of L are the
complementary regions of its diagram in R2, which are the regions R2 −G(L). The diagram of
L on T 2 × {0} is reduced if four distinct faces meet at every crossing of G(L) in R2. Let c(L)
denote the crossing number of the reduced alternating projection of L on T 2 × {0}, which is
minimal by [3]. Throughout the paper, link diagrams on T 2 × {0} will be alternating, reduced
and cellular.

Let Bn denote the hyperbolic regular ideal bipyramid whose link polygons at the two coning
vertices are regular n-gons. The hyperbolic volume of Bn is given by

vol(Bn) = n

(∫ 2π/n

0

− log |2 sin(θ)|dθ +
∫ π(n−2)/2n

0

−2 log |2 sin(θ)|dθ
)
.

See [1] for more details and a table of values of vol(Bn). If we let n = 2, note that vol(B2) = 0.
For a face f of a planar or toroidal graph, let |f | denote the degree of the face; that is, the

number of its edges. Let L be an alternating link diagram on the torus as above. Define the
bipyramid volume of L as follows:

vol♦(L) =
∑

f∈{faces of L}
vol(B|f |).

For a biperiodic alternating link L in R2 × I, the projection graph G(L) in R2 is biperiodic
and can be checkerboard colored. The Tait graph GL is the planar checkerboard graph for
which a vertex is assigned to every shaded region and an edge to every crossing of L. Using the
other checkerboard coloring yields the dual graph G∗

L. We form the bipartite overlaid graph
Gb

L = GL ∪G∗
L determined by the link diagram of L in R2 as follows: The black vertices

of Gb
L are the vertices of GL and of G∗

L; the white vertices of Gb
L are the crossings of

L. The edges of Gb
L join a black vertex for each face of L to every white vertex incident

to the face. The overlaid graph Gb
L is a biperiodic balanced bipartite graph; that is, the

number of black vertices equals the number of white vertices in a fundamental domain.
The Λ-quotient of Gb

L is the toroidal graph Gb
L, which is also a balanced bipartite graph.

See Figures 3 and 4.
This makes it possible to define the toroidal dimer model on Gb

L. A dimer covering of a graph
is a subset of edges that covers all the vertices exactly once, so each vertex is the endpoint
of a unique edge. The toroidal dimer model on Gb

L is a statistical mechanics model of the
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874 ABHIJIT CHAMPANERKAR, ILYA KOFMAN AND MATILDE LALÍN

set of dimer coverings of Gb
L. The characteristic polynomial of the dimer model is defined as

p(z, w) = detκ(z, w), where κ(z, w) is the weighted, signed adjacency matrix with rows indexed
by black vertices and columns by white vertices, and matrix entries determined by a certain
choice of signs on edges, and a choice of homology basis for the Λ-action. See Section 2 and
[13, 18, 27] for details and examples.

Let Gb
n be the finite balanced bipartite toroidal graph Gb

L/(nΛ). Let Z(Gb
n) be the number

of dimer coverings of Gb
n. Kenyon, Okounkov and Sheffield [28] gave an explicit expression for

the asymptotic growth rate of the toroidal dimer model on {Gb
n}:

logZ(Gb
L) := lim

n→∞
1
n2

logZ(Gb
n) = m(p(z, w)).

The number Z(Gb
L) is called the partition function, and the limit is the entropy of the toroidal

dimer model. It is proved in [28] that the Mahler measure of the characteristic polynomial is
independent of the choices made to obtain κ(z, w), so the entropy is determined by Gb

L.

Conjecture 1 (Main Conjecture). Let L be any biperiodic alternating link, with toroidally
alternating Λ-quotient link L. Let p(z, w) be the characteristic polynomial of the toroidal dimer
model on Gb

L. Then,

vol♦(L) � 2πm(p(z, w)).

The link L is often hyperbolic in T 2 × I; that is, (T 2 × I) − L is a complete finite-volume
hyperbolic 3-manifold [2, 17, 25]. In [17], it was proved that

vol((T 2 × I) − L) � vol♦(L), (1.4)

with equality for semi-regular links. Thus, Conjecture 1 would imply that

vol((T 2 × I) − L) � vol♦(L) � 2πm(p(z, w)). (1.5)

In this paper, we prove Conjecture 1 for six biperiodic alternating links using rigorous
computations for the Mahler measures of the corresponding p(z, w). Our examples include
cases for which the expression (1.5) is sharp, with both equalities, and cases for which both
are strict inequalities. We now explain several results at the intersection of geometry, topology
and number theory implied by Conjecture 1, which therefore hold in these special cases.

1.2. Volume and determinant

The determinant of a knot is one of the oldest knot invariants that can be directly computed
from a knot diagram. For any knot or link K,

det(K) = |det(M + MT )| = |ΔK(−1)| = |VK(−1)|,

where M is any Seifert matrix of K, ΔK(t) is the Alexander polynomial and VK(t) is the Jones
polynomial of K (see, for example, [32]).

Experimental evidence has long suggested a close relationship between the volume and
determinant of alternating knots [23, 37]. The following inequality was conjectured in [15],
and verified for all alternating knots up to 16 crossings, weaving knots [16] with hundreds of
crossings, all 2-bridge links and alternating closed 3-braids [11].
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MAHLER MEASURE AND THE VOL-DET CONJECTURE 875

Conjecture 2 (Vol-Det Conjecture [15]). For any alternating hyperbolic link K,

vol(K) < 2π log det(K).

It was shown in [15] that the constant 2π is sharp; that is, for any α < 2π, there exist
alternating links for which vol(K) > α log det(K).

In [13–15], biperiodic alternating links were considered as limits of sequences of finite
hyperbolic links. In Section 2, we define a natural notion of convergence for a sequence
of alternating links to a biperiodic alternating link L, called Følner convergence almost

everywhere, denoted by Kn
F→ L. It was proved in [13] that for any sequence of alternating

links Kn that converge to a biperiodic alternating link L in this sense, the determinant densities
of Kn converge to the density of the Mahler measure of the characteristic polynomial p(z, w)
of the associated toroidal dimer model:

Kn
F→ L =⇒ lim

n→∞
log det(Kn)

c(Kn)
=

m(p(z, w))
c(L)

.

The following theorem implies that whenever Conjecture 1 holds with a strict inequality, we
obtain many infinite families of knots that satisfy the Vol-Det Conjecture (Conjecture 2).

Theorem 3. Let L be any biperiodic alternating link, with toroidally alternating quotient
link L. Let p(z, w) be the characteristic polynomial of the associated toroidal dimer model.

Let Kn be alternating hyperbolic links such that Kn
F→ L. If vol♦(L) < 2πm(p(z, w)), then

vol(Kn) < 2π log det(Kn) for almost all n.

Note that for any L as in Theorem 3, the infinite families of knots or links satisfying the
Vol-Det Conjecture include almost all Kn for every sequence Kn

F→ L.

1.3. Lower bounds for Mahler measure

Finding lower bounds for Mahler measure has intrigued mathematicians for more than 80
years. Kronecker’s lemma implies that polynomials in Z[z] with m(p) = 0 are exactly products
of cyclotomic polynomials and monomials. Lehmer [31] first asked in 1933 whether there exists
ε > 0 such that for every p(z) ∈ Z[z] with m(p) > 0, it follows that m(p) > ε. Lehmer’s question
remains open to this day, although there are several results on specific families of polynomials
[4, 10, 34] and general lower bounds that depend on the degree of p(z) [22].

For any multivariable polynomial, Boyd and Lawton [5, 30] showed that its Mahler measure
is given by a limit of Mahler measures of single variable polynomials. Therefore, in terms of
Lehmer’s question, a lower bound for single variable polynomials would automatically imply
a lower bound for multivariable polynomials. Nevertheless, finding multivariable polynomi-
als with low Mahler measure has also attracted interest and speculation [5]. Smyth [36]
characterized multivariable polynomials with m(p) = 0, generalizing Kronecker’s lemma.

For a two-variable polynomial p(z, w), Smyth’s proof involves the Newton polygon Δ(p) in
R2, which is the convex hull of {(m,n) ∈ Z2 | the coefficient of zmwn in p is non-zero}. For
each side Δ� of Δ(p), one can associate a one-variable polynomial p� whose coefficients are
those of p corresponding to the points on Δ�. Smyth proved that for all Δ�,

m(p�) � m(p). (1.6)

It is interesting to compare the bound in Conjecture 1 with Smyth’s bound (1.6). For
the polynomials we consider in this paper, Conjecture 1 yields a much better bound, and
it is actually sharp in two examples, which are discussed in Section 2. Let vtet ≈ 1.0149
be the volume of the regular ideal tetrahedron, voct ≈ 3.6638 be the volume of the regular
ideal octahedron and v16 ≈ 7.8549 be the volume of the regular ideal bipyramid B8. We
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876 ABHIJIT CHAMPANERKAR, ILYA KOFMAN AND MATILDE LALÍN

Figure 1 (colour online). A typical biperiodic alternating link.

consider the following polynomials, for which the results are summarized in the table
below.

P1 = 4 +
(
w +

1
w

+ z +
1
z

)

P2 = 6 −
(
w +

1
w

+ z +
1
z

+
w

z
+

z

w

)

P3 = −z(w2 − 4w + 1) + w2 + 4w + 1

P4 = (1 + w2)(1 − z)2 − w(6 + 20z + 6z2)

P5 = −w2z2 + 6w2z + 6wz2 − w2 + 28wz − z2 + 6w + 6z − 1

p m(p) vol♦(L)/2π maximal m(p�)

P1
2voct
2π

≈ 1.16624361 2voct
2π

≈ 1.16624361 m(z + 1) = 0

P2
10vtet

2π
≈ 1.61532973 10vtet

2π
≈ 1.61532973 m(z + 1) = 0

P3 1.65546767 10vtet
2π

≈ 1.61532973 m(z2 + 4z + 1) ≈ 1.31695789

P4 2.79856868 10vtet+2voct
2π

≈ 2.78157335 m(z2 − 6z + 1) ≈ 1.76274717

P5 3.14673710 8vtet+voct+v16
2π

≈ 3.12553175 m(z2 − 6z + 1) ≈ 1.76274717

1.4. A typical example for Conjecture 1

Our proven examples are rather special because the characteristic polynomials that lend
themselves to the methods which allow us to compute m(p) exactly seem to be special. We
pause here to present a more typical but only numerically verified example for Conjecture 1.

Figure 1 shows the biperiodic alternating link L, and fundamental domain for its alternating
quotient link L in T 2 × I. The fundamental domain for L has one octagon, four pentagons,
one square and eight triangles. Thus, as vol(B4) = voct and vol(B3) = 2vtet,

vol♦(L) = vol(B8) + 4vol(B5) + voct + 16vtet ≈ 47.704628.

Using SnapPy [21] inside Sage to verify the computation rigorously, we verified that

vol((T 2 × I) − L) ≈ 47.644829.
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MAHLER MEASURE AND THE VOL-DET CONJECTURE 877

Using the method described in Section 2, we computed the following characteristic
polynomial p(z, w), which has genus 8,

p(z, w) = wz2 + z3 − 2wz + 104z2 − 2z3/w + w + 510z + 510z2/w + z3/w2 − 2456z/w

+ 104z2/w2 + 510/w + 1/z + 510z/w2 + z2/w3 + 104/w2 − 2/(wz) − 2z/w3

+ 1/w3 + 1/(w2z) + 104.

Numerically, 2πm(p) ≈ 47.9214, so L satisfies Conjecture 1, and inequality (1.5) within a range
of 0.6%,

vol((T 2 × I) − L) < vol♦(L) < 2πm(p).

1.5. Organization

In Section 2, we recall definitions, properties and examples for the toroidal dimer model, Følner
convergence of links, Mahler measure and the Bloch–Wigner dilogarithm. In Section 3, we prove
Theorem 3, as well as its corollary, which gives a new bound on how much the volume of a
hyperbolic alternating link can change after drilling out an augmented unknot. In Section 4,
we prove six special cases of Conjecture 1, and provide numerical evidence to support it.

2. Background

2.1. Toroidal dimer model

The study of the dimer model is an active research area (see the excellent introductory lecture
notes [18, 27]). As mentioned in the Introduction, a dimer covering (or perfect matching) of a
graph is a pairing of adjacent vertices. The dimer model on a graph G is a statistical mechanics
model of the set of dimer coverings of G.

Planar graphs. Let G be a finite balanced bipartite planar graph, with edge weights μe for
each edge e in G. The Kasteleyn signs are a choice of sign for each edge, such that each face of
G with 0 mod 4 edges has an odd number of negative signs, and each face with 2 mod 4 edges
has an even number of negative signs. A Kasteleyn matrix κ is a weighted, signed adjacency
matrix of G, such that rows are indexed by black vertices, and columns by white vertices. The
matrix coefficients are ±μe, with the sign given by the Kasteleyn sign on e. Then, taking the
sum over all dimer coverings M of G, the partition function Z(G) satisfies (see [18, 27]):

Z(G) :=
∑
M

∏
e∈M

μe = |det κ|.

With μe = 1 for every edge e, Z(G) is the number of dimer coverings of G. Also see [19] for
relations between dimer coverings of planar graphs and knot theory.

Toroidal graphs. Now, let G be a finite balanced bipartite toroidal graph. As in the planar
case, we choose Kasteleyn signs on the edges of G. We then choose oriented simple closed
curves γz and γw on T 2, transverse to G, representing a basis of H1(T 2). We orient each edge
e of G from its black vertex to its white vertex. The weight on e is

μe = zγz·ewγw·e,

where · denotes the signed intersection number of e with γz or γw. For example, see Figure 2.
The Kasteleyn matrix κ(z, w) is the weighted, signed adjacency matrix with rows indexed by
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878 ABHIJIT CHAMPANERKAR, ILYA KOFMAN AND MATILDE LALÍN

Figure 2. (a) Edge weights μe = zγz ·e to compute κ(z, w). (b) Toroidal bipartite graph G
with a choice of Kasteleyn signs.

black vertices and columns by white vertices, and matrix entries ±μe, with the sign given by
the Kasteleyn sign on e. The characteristic polynomial is defined as

p(z, w) = detκ(z, w).

With μe as above, the number of dimer coverings of G is given by (see [18, 27]):

Z(G) = 1
2 | − p(1, 1) + p(−1, 1) + p(1,−1) + p(−1,−1)|.

Biperiodic graphs. Let G be a biperiodic bipartite planar graph, so that translations by a
two-dimensional lattice Λ act by isomorphisms of G. Let Gn be the finite balanced bipartite
toroidal graph given by the quotient G/(nΛ). Kenyon, Okounkov and Sheffield [28] gave an
explicit expression for the growth rate of the toroidal dimer model on {Gn}:

Theorem 4 [28, Theorem 3.5]. Let G be a biperiodic bipartite planar graph. Then,

logZ(G) := lim
n→∞

1
n2

logZ(Gn) = m(p(z, w)).

Thus, Theorem 4 says that, independent of any choice of Kasteleyn signs and homology basis
for the Λ–action, the growth rate of any toroidal dimer model is given by the Mahler measure
of its characteristic polynomial.

In [13], the first two authors defined the following notion of convergence of links in S3 to a
biperiodic alternating link.

Definition 5 [13, 15]. We will say that a sequence of alternating links Kn Følner converges

almost everywhere to the biperiodic alternating link L, denoted by Kn
F→ L, if the respective

projection graphs {G(Kn)} and G(L) satisfy the following: There are subgraphs Gn ⊂ G(Kn)
such that

(i) Gn ⊂ Gn+1, and
⋃
Gn = G(L),

(ii) limn→∞ |∂Gn|/|Gn| = 0, where | · | denotes number of vertices, and ∂Gn ⊂ G(L)
consists of the vertices of Gn that share an edge in G(L) with a vertex not in Gn,

(iii) Gn ⊂ G(L) ∩ (nΛ), where nΛ represents n2 copies of the Λ-fundamental domain for the
lattice Λ such that L = L/Λ,

(iv) limn→∞ |Gn|/c(Kn) = 1, where c(Kn) denotes the crossing number of Kn.
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MAHLER MEASURE AND THE VOL-DET CONJECTURE 879

Figure 3 (colour online). (a) Infinite square weave W and fundamental domain for W .
(b) Overlaid graph Gb

W and fundamental domain for Gb
W .

Theorem 6 [13]. Let L be any biperiodic alternating link, with toroidally alternating
quotient link L. Let p(z, w) be the characteristic polynomial of the associated toroidal dimer

model. Let Kn be alternating links such that Kn
F→ L. Then,

lim
n→∞

log det(Kn)
c(Kn)

=
m(p(z, w))

c(L)
.

Finally, all of our examples of biperiodic alternating links below satisfy the hypotheses of
[17, Theorem 7.5], which implies that the link diagram admits an embedding into R2 for which
the faces are cyclic polygons. Such nice geometry allows us to draw the diagrams for their
overlaid graphs with vertices at the centers of the corresponding circles.

Example 1: Square weave. Figure 3(a) shows the infinite square weave W, with a choice of
fundamental domain, giving a toroidally alternating link W with c(W ) = 2. Both of the Tait
graphs of W are the infinite square grid. The overlaid graph Gb

W is shown in Figure 3(b), with
the fundamental domain for Gb

W , which matches the toroidal graph shown in Figure 2(b).
We can now compute p(z, w) = detκ(z, w) for G = Gb

W , as described above, and in more
detail in [18, 27]. Using Figure 2(b), with the ordering as shown,

κ(z, w) =
[−1 − 1/z 1 + w

1 + 1/w 1 + z

]
, p(z, w) = −

(
4 +

1
w

+ w +
1
z

+ z

)
. (2.1)

By Theorem 12, 2πm(p(z, w)) = 2 voct. By [13, 15], it follows that for Kn
F→ W, voct ≈ 3.66386

is the limit of both determinant densities and volume densities:

lim
n→∞

2π log det(Kn)
c(Kn)

=
2πm(p(z, w))

c(W )
= voct = lim

n→∞
vol(Kn)
c(Kn)

.

Example 2: Triaxial link. Figure 4(a) shows part of the biperiodic alternating diagram of
the triaxial link L, and the fundamental domain for the toroidally alternating link L with
c(L) = 3. Its projection graph G(L) is the trihexagonal tiling. The Tait graphs of L are the
regular hexagonal and triangular tilings, which form the biperiodic balanced bipartite overlaid
graph Gb

L, shown in Figure 4(b).
We can now compute p(z, w) = detκ(z, w) for G = Gb

L, as above. Using Figure 4(c), with
the homology basis, ordered vertices and a choice of Kasteleyn signs on edges as shown,

κ(z, w) =

⎡
⎣ 1 z w

1 1 1
1/z − 1/w 1/w − 1 1 − 1/z

⎤
⎦, p(z, w) = 6 −

(
1
w

+ w +
1
z

+ z +
w

z
+

z

w

)
.

(2.2)
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880 ABHIJIT CHAMPANERKAR, ILYA KOFMAN AND MATILDE LALÍN

Figure 4 (colour online). (a) Diagram of biperiodic triaxial link L, and fundamental domain for
L. (b) Overlaid graph Gb

L and fundamental domain for Gb
L. (c) Toroidal graph Gb

L, with a choice
of homology basis, ordered vertices and a choice of Kasteleyn signs on edges.

By Theorem 13, 2πm(p(z, w)) = 10vtet, where vtet ≈ 1.01494. By [13], for Kn
F→ L,

lim
n→∞

2π log det(Kn)
c(Kn)

=
2πm(p(z, w))

c(L)
=

10vtet

3
.

Moreover, by [17],

lim
n→∞

vol(Kn)
c(Kn)

=
vol(T 2 × I − L)

c(L)
=

10vtet

3
.

For the square weave and the triaxial link, the volume and determinant densities both
converge to the volume density of the toroidal link, but we do not know of any other such
examples. The strict inequality satisfied by all the other examples in Section 4 seems to be more
typical. The first two authors and Purcell compute the exact hyperbolic volume of infinitely
many other such biperiodic alternating links in [17].

2.2. General Mahler measure theory

Let P (x1, . . . , xn) ∈ C[x±
1 , . . . , x

±
n ] be non-zero, and let Tn denote the unit torus in Cn. The

logarithmic Mahler measure of P is defined by

m(P ) =
1

(2πi)n

∫
Tn

log |P (x1, . . . , xn)| dx1

x1
· · · dxn

xn
.

We now describe the general method for finding the exact Mahler measure of certain two-
variable polynomials, which was developed by Boyd and Rodriguez–Villegas [8, 9]. See also
the discussion leading to [38, Theorem 2]. Let P (x, y) ∈ C[x, y] be a non-zero polynomial of
degree d in y. Let Y be the zero locus of P (x, y), and let X be a smooth projective completion
of Y . If we think of C[x, y] = C[x][y], then we may write

P (x, y) = P ∗(x)(y − y1(x)) · · · (y − yd(x)),

where yi(x) are algebraic functions of x.
By applying Jensen’s formula with respect to the variable y, to the integral in the definition

of Mahler measure, we obtain

m(P (x, y)) − m(P ∗(x)) =
1

(2πi)2

∫
T2

log |P (x, y)|dx
x

dy

y
− m(P ∗)

=
1

(2πi)2

∫
T2

d∑
j=1

log |y − yj(x)|dx
x

dy

y
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MAHLER MEASURE AND THE VOL-DET CONJECTURE 881

=
1

2πi

d∑
j=1

∫
|x|=1,|yj(x)|�1

log |yj(x)|dx
x

= − 1
2π

d∑
j=1

∫
|x|=1,|yj(x)|�1

η(x, yj),

where

η(x, y) := log |x|d arg y − log |y|d arg x

is a closed differential form, and d arg z = Im(dz/z). We have that

η(z, 1 − z) = dD(z),

where D(z) is the Bloch–Wigner dilogarithm given by

D(z) = Im(Li2(z)) + arg(1 − z) log |z|, (2.3)

and

Li2(z) = −
∫ z

0

log(1 − t)
t

dt

is the classical dilogarithm. While the value of the classical dilogarithm is dependent on the
integration path, D(z) is a single-valued continuous function in P1(C) which is real analytic in
C − {0, 1}.

If we can write

x ∧ yj =
∑
jk

αjk(zjk ∧ (1 − zjk)), (2.4)

in C(X)∗ ∧ C(X)∗, then we have

m(P (x, y)) − m(P ∗(x)) = − 1
2π

d∑
j=1

∑
jk

αjk D(zjk)|∂{|x|=1,|yj(x)|�1} . (2.5)

It is not clear a priori that equation (2.4) can be solved for any given P (x, y). Champanerkar
[12] showed that for the A-polynomial of any 1-cusped hyperbolic 3-manifold, (2.4) can be
solved using Thurston’s gluing equations for ideal triangulations. In addition, if the curve
attached to our polynomial has genus 0, then it can be parametrized (see [38]). In this case,
we will get a solution to (2.4), possibly with some extra terms of the form c ∧ z, where c is a
constant, and z is a function. Then, we can still reach a closed formula by integrating η(c, z)
directly. Note that η(ω, z) = 0 when ω is a root of unity. Thus, it is more convenient to work
in (C(X)∗ ∧ C(X)∗)Q, where the subscript indicates tensoring by Q, resulting in the torsion
elements removed from consideration.

Lemma 7. Let a, b, c, d ∈ C and t be a variable. If ad− bc �= 0, we have, in (C(t)∗ ∧ C(t)∗)Q,

(at + b) ∧ (ct + d) =
act + bc

ad− bc
∧ act + ad

ad− bc
− (ad− bc) ∧ act + bc

act + ad

− c ∧ (ct + d) − (at + b) ∧ a− c ∧ a.

Proof.

−(act + bc)
ad− bc

∧ act + ad

ad− bc
= (−act− bc) ∧ (act + ad)

− (−act− bc) ∧ (ad− bc) − (ad− bc) ∧ (act + ad)

= (−act− bc) ∧ (act + ad) + (ad− bc) ∧ −(act + bc)
act + ad
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882 ABHIJIT CHAMPANERKAR, ILYA KOFMAN AND MATILDE LALÍN

and

(−act− bc) ∧ (act + ad) = (−at− b) ∧ (ct + d) + c ∧ (ct + d) + (−at− b) ∧ a + c ∧ a,

and we finally use that (−x) ∧ y = x ∧ y. �

Properties of the Bloch–Wigner dilogarithm. We record here some useful properties of the
Bloch–Wigner dilogarithm given by (2.3). A good reference in the subject is Zagier [39].

Its most fundamental property is the five-term relationship

D(x) + D(y) + D(1 − xy) + D

(
1 − x

1 − xy

)
+ D

(
1 − y

1 − xy

)
= 0. (2.6)

We will often refer to equation (2.6) as ‘the five-term relation generated by x and y.’ In
particular,

D

(
1
z

)
= −D(z), and D(1 − z) = −D(z). (2.7)

In addition, we have,

D(z) = −D(z). (2.8)

This identity, which is independent of the five-term relation, implies D|R = 0.
By taking the five-term relation generated by z and −z, we obtain

2D(z) + 2D(−z) = D(z2). (2.9)

Finally, we record a property that expresses D(z) as a combination of dilogarithms evaluated
at complex numbers of norm 1.

D(z) =
1
2

(
D

(z
z

)
+ D

(
1 − 1/z
1 − 1/z

)
+ D

(
1/(1 − z)
1/(1 − z)

))
. (2.10)

3. Applications

3.1. Proof of the Vol-Det Conjecture for infinite families of links

In this section, we prove Theorem 3. We will refer to the notation used in Definition 5.
Let K be any hyperbolic alternating link with a reduced alternating diagram, for which the

number of bounded i-faces of G(K) is bi, for all i > 1. By [1, Theorem 4.1], we get a volume
bound for K, which is similar to equation (1.4) for links in T 2 × I, by excluding the unbounded
face of the planar link diagram:

vol(K) � vol♦(K) :=
∑

f∈{bounded
faces of

K}
vol(B|f |) =

∑
i

bi vol(Bi).

Theorem 8. Let L be any biperiodic alternating link, with toroidally alternating quotient

link L. Let Kn be alternating hyperbolic links such that Kn
F→ L. Then,

lim
n→∞

vol♦(Kn)
c(Kn)

=
vol♦(L)
c(L)

.

Proof. Let bn,i be the number of bounded i-faces of G(Kn), for Kn
F→ L. Then,

vol♦(Kn)
c(Kn)

:=
∑

i bn,i vol(Bi)
c(Kn)

.
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MAHLER MEASURE AND THE VOL-DET CONJECTURE 883

Figure 5 (colour online). Volume bound for Følner convergence of finite links Kn to a biperiodic
link L: the part Gn ⊂ G(L) is shown in the disc. As Gn ⊂ G(Kn), the bipyramid volume density
of Kn converges to that of L.

Let Gn ⊂ G(Kn) be as in Definition 5. Since L = L/Λ, the projection graph G(L) lifts to
a Λ-fundamental domain graph G̃(L) for G(L). We consider three mutually exclusive types of
bounded faces of G(Kn) (see Figure 5):

(1) Let b′n,i be the number of i-faces of all copies of G̃(L) entirely contained in Gn.
(2) Let b′′n,i be the number of i-faces of Gn that are not counted in (1).
(3) Let b′′′n,i be the number of i-faces of G(Kn) which are not in Gn.

Note that b′n,i + b′′n,i is the number of i-faces of Gn, and b′n,i + b′′n,i + b′′′n,i = bn,i, the number of
bounded i-faces of G(Kn).

Now, suppose that there are cn copies of G̃(L) entirely contained in Gn, so if bLi is the number
of i-faces of G̃(L), then b′n,i = cn b

L
i . Moreover, we can bound the remaining faces of Gn, which

are counted in item (2). Every face of Gn counted in b′′n,i is in a copy of G̃(L) incident to ∂Gn,
so that b′′n,i � bLi |∂Gn|. Thus,

cn |G(L)| � |Gn| � cn |G(L)| + |G(L)| |∂Gn|.
By Definition 5, |∂Gn|

|Gn| → 0, so that cn |G(L)|
|Gn| → 1 as n → ∞. Therefore,

lim
n→∞

∑
i b

′
n,i vol(Bi)
|Gn| = lim

n→∞

∑
i cn b

L
i vol(Bi)

cn |G(L)| =
∑

i b
L
i vol(Bi)
|G(L)| =

vol♦(L)
c(L)

.

By adding the central axis and stellating each bipyramid, every Bi can be decomposed
into i tetrahedra (see [17, Figure 15]). Since each tetrahedron contributes at most vtet to the
hyperbolic volume, vol(Bi) � i vtet. Therefore, for every copy of G̃(L) which is only partially
contained in Gn, ∑

i

b′′n,i vol(Bi) �
∑
i

i bLi vtet |∂Gn| � (4 |G(L)|)vtet |∂Gn|.

For the last inequality, the i bLi sum counts with multiplicity the vertices of all faces of G(L),
which is 4-valent, so the sum over all i is bounded by four times the number of its vertices.

For the bounded i-faces of G(Kn) which are not in Gn,∑
i

b′′′n,i vol(Bi) �
∑
i

i b′′′n,i vtet � 4vtet |G(Kn) −Gn| + 4vtet |∂Gn|.
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884 ABHIJIT CHAMPANERKAR, ILYA KOFMAN AND MATILDE LALÍN

The last inequality can be seen as follows: the i b′′′n,i sum counts with multiplicity the vertices
of all bounded faces of G(Kn) that are not in Gn. Since G(Kn) is 4-valent, the sum over all i
is bounded by four times the number of vertices outside Gn and vertices of ∂Gn.

By Definition 5, |∂Gn|
|Gn| → 0 and |Gn|

c(Kn) → 1 as n → ∞. Thus, |G(Kn)−Gn|
c(Kn) → 0, so

lim
n→∞

vol♦(Kn)
c(Kn)

= lim
n→∞

∑
i(b

′
n,i + b′′n,i + b′′′n,i) vol(Bi)

c(Kn)

= lim
n→∞

∑
i b

′
n,i vol(Bi)
|Gn| + O

( |∂Gn|
|Gn|

)
vtet + O

( |G(Kn) −Gn|
c(Kn)

)
vtet

=
vol♦(L)
c(L)

. �

Proof of Theorem 3. Since vol(K) � vol♦(K),

vol(Kn)
c(Kn)

� vol♦(Kn)
c(Kn)

.

Hence, the hypothesis vol♦(L) < 2πm(p(z, w)) and Theorem 8 imply that

lim
n→∞

vol(Kn)
c(Kn)

� lim
n→∞

vol♦(Kn)
c(Kn)

=
vol♦(L)
c(L)

<
2πm(p(z, w))

c(L)
. (3.1)

By Theorem 6, Kn
F→ L implies

lim
n→∞

log det(Kn)
c(Kn)

=
m(p(z, w))

c(L)
.

Therefore,

lim
n→∞

vol(Kn)
c(Kn)

< lim
n→∞

2π log det(Kn)
c(Kn)

,

which proves the claim. �

Remark 9. The proof above fails without the hypothesis vol♦(L) < 2πm(p(z, w)), when
limn→∞

vol(Kn)
c(Kn) = limn→∞

2π log det(Kn)
c(Kn) . This happens in only two cases that we know of: the

square weave W and the triaxial link L discussed in Section 4.2. Nevertheless, we checked
numerically for weaving knots Kn

F→ W (see [16]) with hundreds of crossings that the Vol-Det
Conjecture does hold.

3.2. Bound on volume change under augmentation

In [14], it was shown that the Vol-Det Conjecture implies the following conjecture, which would
be a new upper bound for how much the volume can change after drilling out an augmented
unknot:

Conjecture 10 [14]. For any hyperbolic alternating link K with an augmented unknot
B around any two parallel strands of K,

vol(K) < vol(K ∪B) � 2π log det(K).

In this section, we prove Conjecture 10 for infinite families of knots or links that include
almost all Kn for every sequence Kn

F→ L as in Theorem 3.
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MAHLER MEASURE AND THE VOL-DET CONJECTURE 885

Figure 6 (colour online). Augmented hyperbolic alternating links K ∪B and Km ∪B.

Corollary 11. Let Kn
F→ L be links satisfying the conditions of Theorem 3. Then for

almost all n,

vol(Kn) < vol(Kn ∪B) < 2π log det(Kn).

Proof. Since volume increases under Dehn drilling, vol(Kn) < vol(Kn ∪B). Although we
do not know that volume densities of Kn converge to that of L (see [17, Conjecture 6.5]),
Theorem 8 implies lim supn→∞

vol(Kn)
c(Kn) � vol♦(L)

c(L) .
Let K ∪B be any augmented alternating link, and let Km denote the m-periodic alternating

link with quotient K, formed by taking m copies of a tangle T as in Figure 6. It was shown in
[14] that

lim
m→∞

vol(Km)
c(Km)

=
vol(K ∪B)

c(K)
, and lim

m→∞
2π log det(Km)

c(Km)
=

2π log det(K)
c(K)

.

Thus, for all m, lim supn→∞
vol(Km

n )
c(Km

n ) � vol♦(L)
c(L) + ε(m), such that limm→∞ ε(m) = 0. It follows

that lim supm,n→∞
vol(Km

n )
c(Km

n ) � vol♦(L)
c(L) . Therefore,

vol(Kn ∪B)
c(Kn)

= lim
m→∞

vol(Km
n )

c(Km
n )

� lim sup
m,n→∞

vol(Km
n )

c(Km
n )

� vol♦(L)
c(L)

<
2π log det(Kn)

c(Kn)

for almost all n, where the final inequality follows by inequality (3.1) and Theorem 6. �

4. Proven examples for Conjecture 1

To review notation, recall that vtet is the volume of the regular ideal tetrahedron, and voct is
the volume of the regular ideal octahedron:

vtet = D
(
eiπ/3

)
= D

(
1 +

√
3i

2

)
≈ 1.01494, voct = 4D

(
eiπ/2

)
= 4D(i) ≈ 3.66386.

4.1. Square weave

Our first example is the square weave W, as shown in Figure 3, which was discussed in Example
1 of Section 2. Let W be its alternating quotient link in T 2 × I as in Section 2. By equation
(2.1),

pW (z, w) = −
(

4 + w +
1
w

+ z +
1
z

)
.

In [6], Boyd gives the main idea how to prove a formula for the Mahler measure of pW (z, w).
Below we provide the missing details, including the dilogarithm evaluation using formula (2.5).
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886 ABHIJIT CHAMPANERKAR, ILYA KOFMAN AND MATILDE LALÍN

Theorem 12.

2πm(pW ) = 8D(i) = 2voct.

Consequently, vol((T 2 × I) −W ) = vol♦(W ) = 2πm(pW ).

Proof. Consider the factorization due to Boyd [6]:

q(z, w) = −pW (z/w,wz) = 4 +
(
wz +

1
wz

+
z

w
+

w

z

)

=
1
wz

(1 + iw + iz + wz)(1 − iw − iz + wz).

Note that m(1 − iw − iz + wz) = m(1 + iw + iz + wz) since one is obtained from the other
by z → −z and w → −w, which does not alter the Mahler measure. Hence, m(pW ) = 2m(q1),
where q1(z, w) = 1 + iw + iz + wz.

Let us compute m(q1). Setting w = eiθ we get

|z| =
∣∣∣∣1 + iw

w + i

∣∣∣∣ =
∣∣∣∣1 + iw

1 − iw

∣∣∣∣ =
∣∣∣∣1 + ei(θ+π/2)

1 − ei(θ+π/2)

∣∣∣∣ =
∣∣∣∣cot

(
2θ + π

4

)∣∣∣∣ .
Then, |z| � 1 if and only if −π � θ � 0. Therefore, we have to integrate between w = −1 and
w = 1. The wedge product can be decomposed as

w ∧ z = w ∧ 1 + iw

i + w
= w ∧ 1 + iw

1 − iw
= iw ∧ (1 + iw) − iw ∧ (1 − iw).

Applying (2.5), we evaluate − 1
2π (D(−iw) −D(iw)) on the boundary w|1-1 to obtain

2πm(q1) = −D(−i · 1) + D(i · 1) + D(−i · (−1)) −D(i · (−1)) = 4D(i).

Thus, we obtain the first claim:

2πm(pW ) = 4πm(q1) = 8D(i) = 2voct.

By [17, Theorem 3.5],

vol((T 2 × I) −W ) = vol♦(W ) = 2voct.

Thus, Conjecture 1 is verified for the square weave W with an equality. �

4.2. Triaxial link

Next, we consider the triaxial link L as shown in Figure 4, which was discussed in Example
2 of Section 2. Let L be its alternating quotient link in T 2 × I as in Section 2. By equation
(2.2),

pL(z, w) = 6 −
(
w +

1
w

+ z +
1
z

+
w

z
+

z

w

)
.

In [6], Boyd mentions without giving the proof that the Mahler measure of pL(z, w) can be
found by using equation (2.5). Below we provide the proof.

Theorem 13.

2πm(pL) = 10D

(
1 +

√
3

2

)
= 10vtet.

Consequently, vol((T 2 × I) − L) = vol♦(L) = 2πm(pL).
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MAHLER MEASURE AND THE VOL-DET CONJECTURE 887

Proof. We can parametrize the curve defined by pL(z, w) = 0 by using standard algorithms
(see, for example, [33, Chapter 4]). We obtain

z = − (2t− 1)(t− 1)
t + 1

, w = − (t− 2)(t− 1)
t(t + 1)

.

Setting w = eiθ we write

eiθ = − (t− 2)(t− 1)
t(t + 1)

⇒ (eiθ + 1)t2 + (eiθ − 3)t + 2 = 0.

Since |z| = | (2t−1)(t−1)
t+1 | and we have to integrate for |z| � 1, it can be seen that the integration

domain is given by θ ∈ (0, 2π) and that this corresponds to a path for t that has boundary
points in t = 1−√

3i
2 and t = 1+

√
3i

2 .
We also have

w ∧ z =
(t− 2)(t− 1)

t(t + 1)
∧ (2t− 1)(t− 1)

t + 1

= (t− 2) ∧ (2t− 1) + (t− 2) ∧ (t− 1) − (t− 2) ∧ (t + 1) + (t− 1) ∧ (2t− 1)

− t ∧ (2t− 1) − t ∧ (t− 1) + t ∧ (t + 1) − (t + 1) ∧ (2t− 1).

Applying Lemma 7 (and ignoring the terms of the form (±1) ∧ x and x ∧ (±1)), we can
express every term as a combination of terms of the form α ∧ (1 − α) as follows:

(t− 2) ∧ (2t− 1) =
4 − 2t

3
∧ 2t− 1

3
− 3 ∧ 4 − 2t

2t− 1
− 2 ∧ (2t− 1)

(t− 2) ∧ (t− 1) = (2 − t) ∧ (t− 1)

(t− 2) ∧ (t + 1) =
2 − t

3
∧ t + 1

3
− 3 ∧ 2 − t

t + 1

(t− 1) ∧ (2t− 1) = (2 − 2t) ∧ (2t− 1) − 2 ∧ (2t− 1)

t ∧ (2t− 1) = (2t) ∧ (1 − 2t) − 2 ∧ (2t− 1)

t ∧ (t− 1) = t ∧ (1 − t)

t ∧ (t + 1) = (−t) ∧ (t + 1)

(t + 1) ∧ (2t− 1) =
2t + 2

3
∧ 1 − 2t

3
− 3 ∧ 2t + 2

2t− 1
− 2 ∧ (2t− 1).

Thus, we obtain

w ∧ z =
4 − 2t

3
∧ 2t− 1

3
+ (2 − t) ∧ (t− 1) − 2 − t

3
∧ t + 1

3
+ (2 − 2t) ∧ (2t− 1)

− (2t) ∧ (1 − 2t) − t ∧ (1 − t) + (−t) ∧ (t + 1) − 2t + 2
3

∧ 1 − 2t
3

.

Using equation (2.5), this integrates to

−D

(
2t− 1

3

)
−D(t− 1) + D

(
t + 1

3

)
−D(2t− 1) −D(2t) −D(t) + D(−t) −D

(
2t + 2

3

)

= −D

(
2t− 1

3

)
+ D

(
1 − 2t

3

)
−D(t− 1) + D(1 − t) −D(2t− 1) + D(1 − 2t)

+ D

(
t + 1

3

)
+ D(−t).
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888 ABHIJIT CHAMPANERKAR, ILYA KOFMAN AND MATILDE LALÍN

In order to integrate we must evaluate the formula above in 1−√
3i

2 and 1+
√

3i
2 and take the

difference. But this is the same as evaluating in 1+
√

3i
2 and multiplying by 2, since D(z) =

−D(z). Using the formulas in equation (2.7) and (2.8), we obtain further simplifications:

2πm(pL) = 2D
(

i√
3

)
− 2D

(−i√
3

)
+ 2D

(
−1 +

√
3i

2

)
− 2D

(
1 −√

3i
2

)
+ 2D(

√
3i)

− 2D(−
√

3i) − 2D

(
3 +

√
3i

6

)
− 2D

(
−1 +

√
3i

2

)

= 4D

(
−1 +

√
3i

2

)
− 2D

(
1 −√

3i
2

)
+ 8D(

√
3i) − 2D

(
3 +

√
3i

6

)
.

Using the identity (2.9), we have

2D

(
−1 +

√
3i

2

)
+ 2D

(
1 −√

3i
2

)
= D

(
−1 +

√
3i

2

)
= −D

(
−1 +

√
3i

2

)

and

3D

(
−1 +

√
3i

2

)
+ 2D

(
1 −√

3i
2

)
= 0.

The five-term relation (2.6) generated by 1√
3i

and 1+
√

3i
2 leads to the following identity.

−2D(
√

3i) −D

(
1 −√

3i
2

)
+ D

(
3 +

√
3i

6

)
= 0.

The five-term relation (2.6) generated by 1 +
√

3i and −1+
√

3i
2 yields

D

(
−1 +

√
3i

2

)
−D

(
3 +

√
3i

6

)
= 0.

Putting all of this together, we get

2πm(pL) = 4D

(
−1 +

√
3i

2

)
− 2D

(
1 −√

3i
2

)
+ 8D(

√
3i) − 2D

(
3 +

√
3i

6

)

= −10D

(
1 −√

3i
2

)
= 10D

(
1 +

√
3i

2

)
= 10vtet.

By [17, Theorem 3.5],

vol((T 2 × I) − L) = vol♦(L) = 10vtet.

Thus, Conjecture 1 is verified for the triaxial link L with an equality. �

4.3. Rhombitrihexagonal link

Figure 7 shows the rhombitrihexagonal link R and its alternating quotient link R in T 2 × I.
For the fundamental domain for Gb

R as in Figure 7 (middle), p(z, w) = detκ(z, w) is

pR(z, w) = 6 (6 − 1/w − w − 1/z − z − w/z − z/w).
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MAHLER MEASURE AND THE VOL-DET CONJECTURE 889

Figure 7 (colour online). (a) Diagram of the biperiodic Rhombitrihexagonal link R, and
fundamental domain for R. (b) Overlaid graph Gb

R and fundamental domain for Gb
R.

Corollary 14.

2πm(pR) = 2π log(6) + 10vtet.

Consequently, vol((T 2 × I) −R) = vol♦(R) < 2πm(pR).

Proof. Using Theorem 13, we see that 2πm(pR) = 2π log(6) + 10vtet.
By [17, Theorem 3.5], vol♦(R) = vol((T 2 × I) −R) = 10vtet + 3voct.
Hence,

vol♦(R) = vol((T 2 × I) −R) = 10 vtet + 3 voct ≈ 21.141

< 10 vtet + 2π log(6) ≈ 21.407

= 2π m(pR(z, w)). �

4.4. The link C0

Figure 8(a) shows the biperiodic alternating link C0 and fundamental domain for its alternating
quotient link C0 in T 2 × I. For the fundamental domain for Gb

C0
as in Figure 8(b), we have,

pC0(z, w) = (−z(w2 − 4w + 1) + w2 + 4w + 1)2.

Theorem 15.

2πm(pC0) = 16D
(
(2 +

√
3)i

)
+

8π
3

log(2 +
√

3).

Consequently, vol((T 2 × I) − C0) = vol♦(C0) < 2πm(pC0).

Proof. Let q(z, w) = −z(w2 − 4w + 1) + w2 + 4w + 1. Since pC0(z, w) = q(z, w)2, it is
enough to compute m(q).

In the equation q(z, w) = 0, solve for z in terms of w. Setting w = eiθ, we get,

|z| =
∣∣∣∣w + 4 + w−1

w − 4 + w−1

∣∣∣∣ =
∣∣∣∣cos θ + 2
cos θ − 2

∣∣∣∣ .
Hence, |z| � 1 if and only if cos θ � 0 if and only if −π

2 � θ � π
2 .
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890 ABHIJIT CHAMPANERKAR, ILYA KOFMAN AND MATILDE LALÍN

Figure 8 (colour online). (a) Diagram of biperiodic link C0, and fundamental domain for C0.
(b) Overlaid graph Gb

C0 and fundamental domain for Gb
C0 .

The wedge product leads to

w ∧ z = w ∧ w2 + 4w + 1
w2 − 4w + 1

= w ∧ (1 + (2 +
√

3)w)(1 + (2 −√
3)w)

(1 − (2 +
√

3)w)(1 − (2 −√
3)w)

= w ∧ (1 + (2 +
√

3)w) + w ∧ (1 + (2 −
√

3)w) − w ∧ (1 − (2 +
√

3)w)

− w ∧ (1 − (2 −
√

3)w)

= (2 +
√

3)w ∧ (1 + (2 +
√

3)w) − (2 +
√

3) ∧ (1 + (2 +
√

3)w)

+ (2 −
√

3)w ∧ (1 + (2 −
√

3)w) − (2 −
√

3) ∧ (1 + (2 −
√

3)w)

− (2 +
√

3)w ∧ (1 − (2 +
√

3)w) + (2 +
√

3) ∧ (1 − (2 +
√

3)w)

− (2 −
√

3)w ∧ (1 − (2 −
√

3)w) + (2 −
√

3) ∧ (1 − (2 −
√

3)w).

The Mahler measure of the leading coefficient polynomial equals

m(w2 − 4w + 1) = m
(
(w − (2 +

√
3))(w − (2 −

√
3))

)
= log(2 +

√
3).

By applying equation (2.5), this gives

2πm(q) − 2π log(2 +
√

3) = −2D
(
−(2 +

√
3)i

)
+ 2D

(
(2 +

√
3)i

)
− 2D

(
−(2 −

√
3)i

)

+ 2D
(
(2 −

√
3)i

)
+ log(2 +

√
3)

∫ i

−i

d arg

(
1 + (2 +

√
3)w

1 − (2 +
√

3)w

)

+ log(2 −
√

3)
∫ i

−i

d arg

(
1 + (2 −√

3)w
1 − (2 −√

3)w

)
.

Lemma 16. We have∫ i

−i

d arg
(

1 + Rw

1 −Rw

)
= 2arctan

(
2

R−R−1

)
. (4.1)
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MAHLER MEASURE AND THE VOL-DET CONJECTURE 891

Figure 9 (colour online). (a) Diagram of biperiodic link C1, and fundamental domain for C1.
(b) Overlaid graph Gb

C1 and fundamental domain for Gb
C1 .

Proof.

I(R) :=
∫ i

−i

d arg
(

1 + Rw

1 −Rw

)
=

∫ i

−i

Im
(

Rdw

1 + Rw
+

Rdw

1 −Rw

)

= −2
∫ π/2

−π/2

Re
(

dθ

R−1e−iθ −Reiθ

)

= 2(R−R−1)
∫ π/2

−π/2

cos θdθ
R2 + R−2 − 2 cos(2θ)

= 2(R−R−1)
∫ 1

−1

ds

(R−R−1)2 + 4s2
,

where we have set s = sin θ. Therefore, the lemma follows. �

By specializing in R = 2 +
√

3, we obtain

I(2 +
√

3) =
π

3
= −I(2 −

√
3).

By using properties (2.7) and (2.8), we finally get,

2πm(q) = 8D
(
(2 +

√
3)i

)
+ 2π log(2 +

√
3) − π

3
log(2 +

√
3) +

π

3
log(2 −

√
3)

= 8D
(
(2 +

√
3)i

)
+

4π
3

log(2 +
√

3) ≈ 10.40161017.

Therefore, 2πm(pC0) = 4πm(q) ≈ 20.80322034. By [17, Theorem 3.5],

vol((T 2 × I) − C0) = vol♦(C0) = 20vtet ≈ 20.29883212

Thus, Conjecture 1 is verified for the link C0. �

4.5. The link C1

Figure 9(a) shows the biperiodic alternating link C1, and fundamental domain for its alternating
quotient link C1 in T 2 × I. For the fundamental domain for Gb

C1
as in Figure 9(b), we have

pC1(z, w) = (1 + w2)(1 − z)2 − w(6 + 20z + 6z2).
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892 ABHIJIT CHAMPANERKAR, ILYA KOFMAN AND MATILDE LALÍN

Theorem 17.

2πm(pC1) = 16D
(
(1 +

√
2)i

)
+ 2π log(1 +

√
2).

Consequently, vol((T 2 × I) − C1) = vol♦(C1) < 2πm(pC1).

Proof. Let

p1(z, w) = pC1(z, w
2) = (w4 − 6w2 + 1)z2 − 2(w4 + 10w2 + 1)z + (w4 − 6w2 + 1).

Then, m(pC1) = m(p1). Solving for z in terms of w, we get two roots,

z± =
w4 + 10w2 + 1 ± 4

√
2w(w2 + 1)

w4 − 6w2 + 1
.

We need to impose conditions for |z±| � 1. Set w = eiθ. Then,

z± =
w2 + 10 + w−2 ± 4

√
2(w + w−1)

w2 − 6 + w−2
=

cos(2θ) + 5 ± 4
√

2 cos θ
cos(2θ) − 3

=
cos2 θ ± 2

√
2 cos θ + 2

cos2 θ − 2
=

cos θ ±√
2

cos θ ∓√
2
.

Thus, we get |z+| � 1 if and only if cos θ � 0 and |z−| � 1 if and only if cos θ � 0.

w ∧ z± = w ∧ (1 + (1 ±√
2)w)2(1 − (1 ∓√

2)w)2

(1 + (1 +
√

2)w)(1 − (1 −√
2)w)(1 + (1 −√

2)w)(1 − (1 +
√

2)w)

= w ∧ (1 + (1 ±√
2)w)(1 − (1 ∓√

2)w)
(1 − (1 ±√

2)w)(1 + (1 ∓√
2)w)

= w ∧ (1 + (1 ±
√

2)w) + w ∧ (1 − (1 ∓
√

2)w) − w ∧ (1 − (1 ±
√

2)w)

− w ∧ (1 + (1 ∓
√

2)w)

= (1 ±
√

2)w ∧ (1 + (1 ±
√

2)w) − (1 ±
√

2) ∧ (1 + (1 ±
√

2)w)

+ (1 ∓
√

2)w ∧ (1 − (1 ∓
√

2)w) − (1 ∓
√

2) ∧ (1 − (1 ∓
√

2)w)

− (1 ±
√

2)w ∧ (1 − (1 ±
√

2)w) + (1 ±
√

2) ∧ (1 − (1 ±
√

2)w)

− (1 ∓
√

2)w ∧ (1 + (1 ∓
√

2)w) + (1 ∓
√

2) ∧ (1 + (1 ∓
√

2)w).

The Mahler measure of the leading coefficient polynomial equals

m(w4 − 6w2 + 1) = m
(
(w + (1 +

√
2))(w − (1 −

√
2))(w + (1 −

√
2))(w − (1 +

√
2))

)
= 2 log(1 +

√
2).

By putting together the cases of z+ and z−, and using equation (2.5), we get

2πm(pC1) − 4π log(1 +
√

2) = −4D
(
−(1 +

√
2)i

)
+ 4D

(
(1 +

√
2)i

)
− 4D(−(1 −

√
2)i)

+ 4D((1 −
√

2)i) + 2 log(1 +
√

2)
∫ i

−i

d arg

(
1 + (1 +

√
2)w

1 − (1 +
√

2)w

)

+ 2 log(
√

2 − 1)
∫ i

−i

d arg

(
1 + (

√
2 − 1)w

1 − (
√

2 − 1)w

)
.
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MAHLER MEASURE AND THE VOL-DET CONJECTURE 893

Figure 10 (colour online). Diagram for one of the biperiodic alternating links Cn, and
fundamental domain for Cn. The link Cn as shown is for n = 3.

By equation (4.1) in Lemma 16,

I(1 +
√

2) =
π

2
= −I(

√
2 − 1).

Thus, by properties (2.7) and (2.8), we finally obtain

2πm(pC1) = 16D
(
(1 +

√
2)i

)
+ 4π log(1 +

√
2) − π log(1 +

√
2) + π log(

√
2 − 1)

= 16D
(
(1 +

√
2)i

)
+ 2π log(1 +

√
2) ≈ 17.58392561.

By [17, Theorem 3.5],

vol((T 2 × I) − C1) = vol♦(C1) = 10vtet + 2voct ≈ 17.47714082.

Thus, Conjecture 1 is verified for the link C1. �

4.6. The family of links Cn (numerical results)

We present some numerical results that generalize the rigorously proven examples C0 and C1.
Let Cn be the family of biperiodic alternating links shown in Figure 8 (n = 0), Figure 9

(n = 1) and Figure 10 (n = 3). For even values of n, the fundamental domain like the one
shown in Figure 10 does not result in a toroidally alternating link. In these cases, we need to
double the fundamental domain, as in Figure 8 for the link C0. Consequently, all the quantities
c(L), vol(L), vol♦(L), m(p(z, w)) are doubled, which does not affect the claim in Conjecture 1.

Conjecture 18. The characteristic polynomial for the dimer model corresponding to the
toroidal link Cn is

pCn
(z, w) = (1 + w2)(1 − z)n+1 + (−1)nw

n+1∑
j=0

(
2n + 4
2j + 1

)
zj .

If Conjecture 18 holds, then Conjecture 1 would imply that 10vtet + 2nvoct < 2πm(pCn
).

Pn(z, w) := pCn
(z2, w) = (1 + w2)(1 − z2)n+1 + (−1)nw

((1 + z)2n+4 − (1 − z)2n+4)
2z

.
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894 ABHIJIT CHAMPANERKAR, ILYA KOFMAN AND MATILDE LALÍN

Figure 11 (colour online). (a) Diagram of biperiodic link K, and fundamental domain for K.
(b) Overlaid graph Gb

K and fundamental domain for Gb
K .

Then, m(Pn) = m(pCn
). Computing numerical values for m(Pn) with Mathematica, we form

Table 1. We see that Conjecture 1 is numerically confirmed for the first 12 values of n.

4.7. Medial graph on the 8-8-4 tiling

Let K denote biperiodic alternating link whose projection is the medial graph on the 8-8-4
tiling, as shown in Figure 11. Let K be its alternating quotient link in T 2 × I. In this case, we
have

pK(z, w) = −w2z2 + 6w2z + 6wz2 − w2 + 28wz − z2 + 6w + 6z − 1.

Theorem 19.

2πm(pK) = arccos
(
−7

9

)
log(17 + 12

√
2) + 8D(i) + 4D

(√
7 + 4

√
2i

3

)

− 4D

(
−
√

7 + 4
√

2i
3

)
.

Consequently, vol((T 2 × I) −K) < vol♦(K) < 2πm(pK).

Table 1. Values for m(pCn). For the two values indicated
by (∗), we can only get precision up to 4 decimal places.

n 10vtet + 2nvoct 2πm(pCn )

2 24.80486557 24.96932402
3 32.13259032 32.27389896
4 39.46031507 39.61527996
5 46.78803983 46.93541034
6 54.11576458 54.26836944
7 61.44348933 61.59270586
8 68.77121409 68.92297116
9 76.09893884 76.2489 (∗)
10 83.42666359 83.57804426
11 90.75438835 90.9047 (∗)
12 98.08211310 98.23330183
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MAHLER MEASURE AND THE VOL-DET CONJECTURE 895

Proof. The curve defined by the zero locus of this polynomial can be parametrized by

w =
√

2(t2 + 1) −√
3(t2 − 1)√

2(t2 + 1) +
√

3(t2 − 1)
=

(2
√

6 − 5)
(
t2 − (

5 + 2
√

6
))

t2 − (5 − 2
√

6)

= (2
√

6 − 5)

(
t− (

√
3 +

√
2)
) (

t + (
√

3 +
√

2)
)

(
t− (

√
3 −√

2)
) (

t + (
√

3 −√
2)
) ,

z =
√

2(t2 + 1) − 2
√

3t√
2(t2 + 1) + 2

√
3t

=
t2 −√

6t + 1
t2 +

√
6t + 1

=

(
t−

√
3+1√
2

)(
t−

√
3−1√
2

)
(
t +

√
3+1√
2

)(
t +

√
3−1√
2

) .
Setting z = eiθ, we get,

eiθ =
t2 −√

6t + 1
t2 +

√
6t + 1

=⇒ (eiθ − 1)t2 + (eiθ + 1)
√

6t + (eiθ − 1) = 0

=⇒ t2 − i
√

6 cot
(
θ

2

)
t + 1 = 0.

We continuously choose one of the two roots t for the above polynomial in order to obtain the
parametrization. After some numerical computation, we conclude that we have to integrate for
θ ∈ (0, π) and t in the complex imaginary segment between 0 and −i, and for θ ∈ (π, 2π) and
t in the complex imaginary segment between i and 0.

The general elements that we need to evaluate are

−α1α2α3α4

(
t + α1

√
2 + α2

√
3
)
∧
(
t +

1 + α4

√
3

α3

√
2

)
,

and − α3α4 (2
√

6 − 5) ∧
(
t +

1 + α4

√
3

α3

√
2

)
,

where αi ∈ {±1} (all possible combinations).
For the terms of the second kind equation (2.5) yields

log |2
√

6 − 5| arg

(
t2 −√

6t + 1
t2 +

√
6t + 1

)∣∣∣∣∣
−i

i

= 2π log(5 − 2
√

6) ≈ −14.403772983899.

For the terms of the first kind we use Lemma 7 (and ignore terms of the form (±1) ∧ x and
x ∧ (±1)) to obtain

− α1α2α3α4

(
t + α1

√
2 + α2

√
3
)
∧
(
t +

1 + α4

√
3

α3

√
2

)

= −α1α2α3α4

⎛
⎝ t + α1

√
2 + α2

√
3

α1

√
2 + α2

√
3 − 1+α4

√
3

α3
√

2

⎞
⎠ ∧

⎛
⎝ t + 1+α4

√
3

α3
√

2

α1

√
2 + α2

√
3 − 1+α4

√
3

α3
√

2

⎞
⎠

+ α1α2α3α4

(
α1

√
2 + α2

√
3 − 1 + α4

√
3

α3

√
2

)
∧
⎛
⎝ t + α1

√
2 + α2

√
3

t + 1+α4
√

3
α3

√
2

⎞
⎠ .

 14697750, 2019, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12200 by C

olum
bia U

niversity L
ibraries, W

iley O
nline L

ibrary on [20/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



896 ABHIJIT CHAMPANERKAR, ILYA KOFMAN AND MATILDE LALÍN

The terms in the second line integrate to

α1α2α3α4 log

∣∣∣∣∣α1

√
2 + α2

√
3 − 1 + α4

√
3

α3

√
2

∣∣∣∣∣ arg

⎛
⎝ t + α1

√
2 + α2

√
3

t + 1+α4
√

3
α3

√
2

⎞
⎠
∣∣∣∣∣∣
−i

i

.

Note that exchanging the signs of α1, α2 and α3 together amounts to changing t = ±i to
t = ∓i in the argument and does not change the absolute value term inside the logarithm. See
Table 2.

Putting everything together, the integration of the logarithmic terms yields

(π − β) log

∣∣∣∣∣
√

2 +
√

3 − 1 +
√

3√
2

∣∣∣∣∣ + (β − 3π) log

∣∣∣∣∣
√

2 −
√

3 − 1 +
√

3√
2

∣∣∣∣∣
+ π log

∣∣∣∣∣
√

2 +
√

3 +
1 +

√
3√

2

∣∣∣∣∣
+ (β + π) log

∣∣∣∣∣
√

2 +
√

3 − 1 −√
3√

2

∣∣∣∣∣ + π log

∣∣∣∣∣
√

2 −
√

3 +
1 +

√
3√

2

∣∣∣∣∣
+ (π − β) log

∣∣∣∣∣
√

2 −
√

3 − 1 −√
3√

2

∣∣∣∣∣
+ π log

∣∣∣∣∣
√

2 +
√

3 +
1 −√

3√
2

∣∣∣∣∣− 3π log

∣∣∣∣∣
√

2 −
√

3 +
1 −√

3√
2

∣∣∣∣∣ .
The terms containing β yield

− β log

∣∣∣∣∣
√

2 +
√

3 − 1 +
√

3√
2

∣∣∣∣∣ + β log

∣∣∣∣∣
√

2 −
√

3 − 1 +
√

3√
2

∣∣∣∣∣ + β log

∣∣∣∣∣
√

2 +
√

3 − 1 −√
3√

2

∣∣∣∣∣
− β log

∣∣∣∣∣
√

2 −
√

3 − 1 −√
3√

2

∣∣∣∣∣ = β log(17 + 12
√

2) ≈ 8.679480937097002.

Table 2. Values at various arguments t corresponding to choices of signs α. Here
β = arccos(− 7

9
) ≈ 2.4619188346815493642.

Argument Argument Argument Argument
α1 α2 α3 α4 at t = i at t = 0+ at t = 0− at t = −i

1 1 1 1 β−π
4

0 0 π−β
4

1 −1 1 1 π+β
4

π −π −π+β
4

1 1 −1 1 − 3
4
π −π π 3

4
π

1 1 1 −1 β−3π
4

−π π 3π−β
4

1 −1 −1 1 − 1
4
π 0 0 1

4
π

1 −1 1 −1 β−π
4

0 0 π−β
4

1 1 −1 −1 − 1
4
π 0 0 1

4
π

1 −1 −1 −1 1
4
π π −π − 1

4
π
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The other terms yield

π log

∣∣∣∣∣
√

2 +
√

3 − 1 +
√

3√
2

∣∣∣∣∣− 3π log

∣∣∣∣∣
√

2 −
√

3 − 1 +
√

3√
2

∣∣∣∣∣ + π log

∣∣∣∣∣
√

2 +
√

3 +
1 +

√
3√

2

∣∣∣∣∣
+ π log

∣∣∣∣∣
√

2 +
√

3 − 1 −√
3√

2

∣∣∣∣∣ + π log

∣∣∣∣∣
√

2 −
√

3 +
1 +

√
3√

2

∣∣∣∣∣ + π log

∣∣∣∣∣
√

2 −
√

3 − 1 −√
3√

2

∣∣∣∣∣
+ π log

∣∣∣∣∣
√

2 +
√

3 +
1 −√

3√
2

∣∣∣∣∣− 3π log

∣∣∣∣∣
√

2 −
√

3 +
1 −√

3√
2

∣∣∣∣∣
= π log(833 − 588

√
2 − 480

√
3 + 340

√
6) ≈ 3.32810583970523.

Finally, the dilogarithm terms are given by

α1α2α3α4D

⎛
⎝ −t− 1+α4

√
3

α3
√

2

α1

√
2 + α2

√
3 − 1+α4

√
3

α3
√

2

⎞
⎠ .

Note that exchanging the signs of α1, α2 and α3 together amounts to changing the sign of t.
This can be combined with formulas in equations (2.7) and (2.8) to obtain

4D

⎛
⎝ i− 1+

√
3√

2√
2 +

√
3 − 1+

√
3√

2

⎞
⎠− 4D

⎛
⎝ i− 1+

√
3√

2√
2 −√

3 − 1+
√

3√
2

⎞
⎠− 4D

⎛
⎝ i + 1+

√
3√

2√
2 +

√
3 + 1+

√
3√

2

⎞
⎠

− 4D

⎛
⎝ i− 1−√

3√
2√

2 +
√

3 − 1−√
3√

2

⎞
⎠ + 4D

⎛
⎝ i + 1+

√
3√

2√
2 −√

3 + 1+
√

3√
2

⎞
⎠ + 4D

⎛
⎝ i− 1−√

3√
2√

2 −√
3 − 1−√

3√
2

⎞
⎠

+ 4D

⎛
⎝ i + 1−√

3√
2√

2 +
√

3 + 1−√
3√

2

⎞
⎠− 4D

⎛
⎝ i + 1−√

3√
2√

2 −√
3 + 1−√

3√
2

⎞
⎠

≈ 4 · 2.77301284617524 ≈ 11.092051384700.

By applying the five-term relation and identities such as the following

−i− 1+
√

3√
2√

2 −√
3 − 1+

√
3√

2

= 1 − 1

1−
i+ 1−√

3√
2

√
2−√

3+ 1−√
3√

2

1−
i− 1−√

3√
2

√
2+

√
3− 1−√

3√
2

i+ 1−√
3√

2
√

2−√
3+ 1−√

3√
2

,

one can prove

D

⎛
⎝ i− 1−√

3√
2√

2 +
√

3 − 1−√
3√

2

⎞
⎠ + D

⎛
⎝ i + 1−√

3√
2√

2 −√
3 + 1−√

3√
2

⎞
⎠

= D

⎛
⎝ i− 1+

√
3√

2√
2 −√

3 − 1+
√

3√
2

⎞
⎠ + D

⎛
⎝ i + 1+

√
3√

2√
2 +

√
3 + 1+

√
3√

2

⎞
⎠
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and

D

⎛
⎝ i− 1+

√
3√

2√
2 +

√
3 − 1+

√
3√

2

⎞
⎠ + D

⎛
⎝ i + 1+

√
3√

2√
2 −√

3 + 1+
√

3√
2

⎞
⎠

= D

⎛
⎝ i− 1−√

3√
2√

2 −√
3 − 1−√

3√
2

⎞
⎠ + D

⎛
⎝ i + 1−√

3√
2√

2 +
√

3 + 1−√
3√

2

⎞
⎠ .

This allows us to simplify the dilogarithm terms as

8D

⎛
⎝ i− 1+

√
3√

2√
2 +

√
3 − 1+

√
3√

2

⎞
⎠− 8D

⎛
⎝ i− 1+

√
3√

2√
2 −√

3 − 1+
√

3√
2

⎞
⎠

− 8D

⎛
⎝ i + 1+

√
3√

2√
2 +

√
3 + 1+

√
3√

2

⎞
⎠ + 8D

⎛
⎝ i + 1+

√
3√

2√
2 −√

3 + 1+
√

3√
2

⎞
⎠ .

By using the identity (2.10), we see that the dilogarithm terms equal

8D(i) + 4D

(√
7 + 4

√
2i

3

)
− 4D

(
−
√

7 + 4
√

2i
3

)
.

Then, we have to add everything as well as the Mahler measure of z2 − 6z + 1 which is

2πm(z2 − 6z + 1) = 2π log(3 + 2
√

2) ≈ 2π · 1.76274717403908 ≈ 11.075667144194722.

Putting everything together and collapsing terms, we obtain

2πm(pK) = arccos
(
−7

9

)
log(17 + 12

√
2) + 8D(i) + 4D

(√
7 + 4

√
2i

3

)
− 4D

(
−
√

7 + 4
√

2i
3

)

≈ 19.771532321797992256575200922336735211.

Finally,

vol♦(K) = vol(B8) + vol(B4) + 4vol(B3) ≈ 7.8549 + 3.6638 + 4 × 2.0298 = 19.6379.

Using SnapPy [21] inside Sage to verify the computation rigorously, we verified that

vol((T 2 × I) −K) ≈ 19.559.

Thus, the link K satisfies Conjecture 1, as well as inequality (1.5) within a range of 0.4%,

vol((T 2 × I) −K) < vol♦(K) < 2πm(pK). �

We remark that, except for the link K, the logarithmic terms in the formulas for 2πm(p) for
all the other links above are of the form qπ log(α), where q is a rational number and α is an
algebraic number. In Theorem 19, we have instead a term of the form arccos(− 7

9 ) log(α). The
parameter − 7

9 is also involved in the arguments for the dilogarithm terms, since√
7 + 4

√
2i

3
= exp

(
i

2

(
π − arccos

(
−7

9

)))
.
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