Calculus 3 Final Exam
 May 2009
 Prof O'Bryant

1. Let $\vec{u}=\langle 4,5,-2\rangle$ and $\vec{v}=\langle 1,0,10\rangle$.
(a) $\vec{u}+\vec{v}=$
(b) $\vec{u}-\vec{v}=$
(c) $\vec{u} \times \vec{v}=$
(d) $\vec{u} \cdot \vec{v}=$
(e) The angle between \vec{u} and \vec{v} is:
(f) Give a vector that is not parallel to \vec{v} that is perpendicular to \vec{u}.
2. Let $f(x, y)=\exp (x)+(x-y)^{10}$ and $\vec{r}(t)=\left\langle\sin (t), \ln (t), t e^{t^{2}}\right\rangle$ and $g(x, y, z)=\cos \left(\frac{x^{2}+y}{z}\right)$.
(a) $\nabla f(x, y)=$
(b) $\frac{d}{d t} \vec{r}(t)=$
(c) Give an equation for the tangent plane to $f(x, y)$ at $\left(x_{0}, y_{0}\right)=(3 / 2,1 / 2)$.
(d) $\int_{0}^{1} \vec{r}(t) d t=$
(e) $\nabla g(x, y, z)=$
3. Let R be the region below $x=2 y^{2}$ and above $y=x^{2}$. Write the integral

$$
\iint_{R}(x+y) d A
$$

as an iterated integral, and then evaluate it.
4. Let R be the region $\{(x, y):-1 \leq x \leq 1,0 \leq y \leq \alpha\}$. Compute $\iint_{R}\left(x^{3}+6 y^{2}\right) d A$.
5. (a) Give an equation (parametric or symmetric) for the line which is the intersection of the planes $2 x-y+3 z=4$ and $5 x+y+2 z=8$
(b) Give an equation for the plane containing the points $(1,1,1),(2,2,2)$ and $(1,2,1)$.
6. (a) Plot the region in the $x-y$ plane that is above $y=0$, below $y=\cos (x)$, with $|x| \leq \pi / 2$.
(b) Express the volume of the solid defined by $0 \leq z \leq e^{x+y}$, with x and y being in the region above $y=0$, below $y=\cos (x)$, with $|x| \leq \pi / 2$, as a triple iterated integral.
7. The integral $\oint_{C}-P(x, y) d x+Q(x, y) d y$ measures the flow of the field

$$
\vec{F}(x, y)=\langle P(x, y), Q(x, y)\rangle
$$

across the curve C.
(a) Use Gauss/Green/Stokes to express flow across as a double integral, assuming the curve C is closed.
(b) Express the flow of $\vec{F}(x, y)=\langle x y, 1\rangle$ across the ellipse $x^{2}+y^{2} / 4=1$ as a contour integral.
(c) Express the flow of $\vec{F}(x, y)=\langle x y, 1\rangle$ across the ellipse $x^{2}+y^{2} / 4=1$ as a single integral.
(d) Express the flow of $\vec{F}(x, y)=\langle x y, 1\rangle$ across the ellipse $x^{2}+y^{2} / 4=1$ as a double integral over the interior of the ellipse.
8. Answer the following True/False questions. You lose one point for each incorrectly identified or unidentified statement.
(a) \qquad If $f(x, y)$ is a function of two variables defined for all x and y, then $f(10, y)$ is a function of one variable.
(b) \qquad The plane $x+2 y-3 z=1$ passes through the origin.
(c) The vector $\left\langle\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{2}{\sqrt{3}}\right\rangle$ is a unit vector.
(d)__I_ If $\vec{u} \cdot \vec{v}<0$, then the angle between \vec{u} and \vec{v} is greater than $\pi / 2$.
(e) ___ The plane $x+2 y+3 z=4$ has normal vector $\langle-1,-2,-3\rangle$.
(f) $(\vec{i} \times \vec{j}) \cdot \vec{k}=\vec{i} \cdot(\vec{j} \times \vec{k})$.
(g) ___ The function $z=u \cos (v)$ satisfies the equation $\cos (v) \frac{\partial z}{\partial u}-\frac{\sin v}{u} \frac{\partial z}{\partial v}=1$.
(h) ___ At the point $(3,0)$, the function $g(x, y)=x^{2}+y^{2}$ has the same maximal rate of increase as that of the function $h(x, y)=2 x y$.
(i) ___ If \vec{u} is tangent to the level curve of f at some point, then $\nabla f \cdot \vec{u}=0$ there.
(j) ___ An equation for the tangent plane to the surface $z=x^{2}+y^{3}$ at $(1,1)$ is $z=2+2 x(x-1)+3 y^{2}(y-1)$.
(k) ___ The directional derivative $f_{\vec{u}}(a, b)$ is parallel to \vec{u}.
(l) ___ The iterated integral $\int_{0}^{1} \int_{5}^{12} f d x d y$ is computed over the rectangle $0 \leq x \leq 1,5 \leq y \leq 12$.
$(\mathrm{m}) \quad$ ___ The iterated integrals $\int_{-1}^{1} \int_{0}^{1} \int_{0}^{1-x^{2}} f d z d y d x$ and $\int_{0}^{1} \int_{0}^{1} \int_{-\sqrt{1-z}}^{\sqrt{1-z}} f d x d y d z$ are equal.
(n)
(o) ___ The equation $\vec{r}(t)=3 t \vec{i}+(6 t+1) \vec{j}$ parameterizes a line.
(p)___ If a particle moves with motion $\vec{r}(t)=3 t \vec{i}+2 t \vec{j}+t \vec{k}$, then the particle stops (i.e., has speed 0) at the origin.
(q) ___ The vector field $\vec{F}(x, y)=\langle y, 1\rangle$ is a gradient field.
(r) $\vec{r}^{\prime}(t) \times \vec{r}(t)=\overrightarrow{0}$.
(s)__ Both $x=-t+1, y=2 t$ and $x=2 s, y=-4 s+2$ describe the same line in the $x-y$ plane.

