Calculus 3 Final Exam May 2009 Prof O'Bryant

- 1. Let $\vec{u} = \langle 4, 5, -2 \rangle$ and $\vec{v} = \langle 1, 0, 10 \rangle$.
 - (a) $\vec{u} + \vec{v} =$
 - (b) $\vec{u} \vec{v} =$
 - (c) $\vec{u} \times \vec{v} =$
 - (d) $\vec{u} \cdot \vec{v} =$
 - (e) The angle between \vec{u} and \vec{v} is:
 - (f) Give a vector that is not parallel to \vec{v} that is perpendicular to \vec{u} .

2. Let $f(x,y) = \exp(x) + (x-y)^{10}$ and $\vec{r}(t) = \langle \sin(t), \ln(t), te^{t^2} \rangle$ and $g(x,y,z) = \cos(\frac{x^2+y}{z})$.

- (a) $\nabla f(x,y) =$
- (b) $\frac{d}{dt}\vec{r}(t) =$
- (c) Give an equation for the tangent plane to f(x, y) at $(x_0, y_0) = (3/2, 1/2)$.
- (d) $\int_0^1 \vec{r}(t) dt =$
- (e) $\nabla g(x, y, z) =$
- 3. Let R be the region below $x = 2y^2$ and above $y = x^2$. Write the integral

$$\iint_R (x+y) \, dA$$

as an iterated integral, and then evaluate it.

4. Let R be the region $\{(x,y): -1 \le x \le 1, 0 \le y \le \alpha\}$. Compute $\iint_R (x^3 + 6y^2) dA$.

- 5. (a) Give an equation (parametric or symmetric) for the line which is the intersection of the planes 2x y + 3z = 4and 5x + y + 2z = 8.
 - (b) Give an equation for the plane containing the points (1, 1, 1), (2, 2, 2) and (1, 2, 1).
- 6. (a) Plot the region in the x-y plane that is above y = 0, below $y = \cos(x)$, with $|x| \le \pi/2$.
 - (b) Express the volume of the solid defined by $0 \le z \le e^{x+y}$, with x and y being in the region above y = 0, below $y = \cos(x)$, with $|x| \le \pi/2$, as a *triple* iterated integral.
- 7. The integral $\oint_C -P(x,y) dx + Q(x,y) dy$ measures the flow of the field

$$\vec{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$$

across the curve C.

- (a) Use Gauss/Green/Stokes to express flow across as a double integral, assuming the curve C is closed.
- (b) Express the flow of $\vec{F}(x,y) = \langle xy,1 \rangle$ across the ellipse $x^2 + y^2/4 = 1$ as a contour integral.
- (c) Express the flow of $\vec{F}(x,y) = \langle xy,1 \rangle$ across the ellipse $x^2 + y^2/4 = 1$ as a single integral.
- (d) Express the flow of $\vec{F}(x,y) = \langle xy,1 \rangle$ across the ellipse $x^2 + y^2/4 = 1$ as a double integral over the interior of the ellipse.
- 8. Answer the following True/False questions. You lose one point for each incorrectly identified or unidentified statement.
 - (a) If f(x, y) is a function of two variables defined for all x and y, then f(10, y) is a function of one variable.
 - (b) ____ The plane x + 2y 3z = 1 passes through the origin.

- (c) ____ The vector $\langle \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{2}{\sqrt{3}} \rangle$ is a unit vector.
- (d) _____ If $\vec{u} \cdot \vec{v} < 0$, then the angle between \vec{u} and \vec{v} is greater than $\pi/2$.
- (e) ____ The plane x + 2y + 3z = 4 has normal vector $\langle -1, -2, -3 \rangle$.
- (f) $(\vec{i} \times \vec{j}) \cdot \vec{k} = \vec{i} \cdot (\vec{j} \times \vec{k}).$
- (g) ____ The function $z = u \cos(v)$ satisfies the equation $\cos(v) \frac{\partial z}{\partial u} \frac{\sin v}{u} \frac{\partial z}{\partial v} = 1.$
- (h) _____ At the point (3,0), the function $g(x,y) = x^2 + y^2$ has the same maximal rate of increase as that of the function h(x,y) = 2xy.
- (i) _____ If \vec{u} is tangent to the level curve of f at some point, then $\nabla f \cdot \vec{u} = 0$ there.
- (j) _____ An equation for the tangent plane to the surface $z = x^2 + y^3$ at (1,1) is $z = 2 + 2x(x-1) + 3y^2(y-1)$.
- (k) _____ The directional derivative $f_{\vec{u}}(a, b)$ is parallel to \vec{u} .
- (l) _____ The iterated integral $\int_0^1 \int_5^{12} f \, dx dy$ is computed over the rectangle $0 \le x \le 1, 5 \le y \le 12$.
- (m) ____ The iterated integrals $\int_{-1}^{1} \int_{0}^{1} \int_{0}^{1-x^2} f \, dz \, dy \, dx$ and $\int_{0}^{1} \int_{0}^{1} \int_{-\sqrt{1-z}}^{\sqrt{1-z}} f \, dx \, dy \, dz$ are equal.
- (n) $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$, and this fact *is* hilarious.
- (o) ____ The equation $\vec{r}(t) = 3t\vec{i} + (6t+1)\vec{j}$ parameterizes a line.
- (p) _____ If a particle moves with motion $\vec{r}(t) = 3t\vec{i} + 2t\vec{j} + t\vec{k}$, then the particle stops (i.e., has speed 0) at the origin.
- (q) ____ The vector field $\vec{F}(x,y) = \langle y,1 \rangle$ is a gradient field.
- (r) $\ \vec{r'}(t) \times \vec{r}(t) = \vec{0}.$
- (s) _____ Both x = -t + 1, y = 2t and x = 2s, y = -4s + 2 describe the same line in the x-y plane.