Calculus III (Math 233) Quiz 2

Date: November 21, 2016
Professor Ilya Kofman
NAME: \qquad
Problem 1. Find the volume of the solid enclosed by $z=x^{2}+y^{2}$ and $z=8-x^{2}-y^{2}$.

Problem 2. Find the volume of the solid enclosed between the double-cone $z^{2}=x^{2}+y^{2}$ and the sphere $x^{2}+y^{2}+z^{2}=9$. (This solid includes the $x y$-plane inside the sphere.)

Problem 3. Compute $\int_{C} y d x-x d y$, where C is the path around the quarter-circle of radius 3 as shown:

Problem 4. Consider the vector field $\mathbf{F}=\left\langle 2 e^{z}, 2 y, 2 x e^{z}\right\rangle$. Let C be any curve from $(1,0,1)$ to $(1,1,0)$.
(a) Show that \mathbf{F} is conservative (without using part (b)).
(b) Find the potential function for \mathbf{F}.
(c) Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.

Problem 5. Let $\mathbf{F}=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$. Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}=$ \qquad where C is the path around the origin $p=(0,0)$ as shown:

Problem 6. Let S be the surface $z=x \sqrt{3}+y^{2}$, for $-1 \leq x \leq 1$ and $0 \leq y \leq 1$. Evaluate $\iint_{S} x^{2} y d S$.

Problem 7. Let S be the upper hemisphere: $x^{2}+y^{2}+z^{2}=1, z \geq 0$. Let C be the boundary of S in the $x y$-plane. Do NOT compute the following integrals.
(a) Explain why $\int_{C} x y z d s=0$.
(b) Explain why $\iint_{S} x y z d S=0$.

