## Calculus III (Math 233) Quiz 2

Date: November 21, 2016

Professor Ilya Kofman

NAME:

**Problem 1.** Find the volume of the solid enclosed by  $z = x^2 + y^2$  and  $z = 8 - x^2 - y^2$ .

**Problem 2.** Find the volume of the solid enclosed between the double-cone  $z^2 = x^2 + y^2$  and the sphere  $x^2 + y^2 + z^2 = 9$ . (This solid includes the *xy*-plane inside the sphere.)

**Problem 3.** Compute  $\int_C y \, dx - x \, dy$ , where C is the path around the quarter-circle of radius 3 as shown:



**Problem 4.** Consider the vector field  $\mathbf{F} = \langle 2e^z, 2y, 2xe^z \rangle$ . Let C be any curve from (1,0,1) to (1,1,0).

- (a) Show that **F** is conservative (without using part (b)).
- (b) Find the potential function for  $\mathbf{F}$ .
- (c) Evaluate  $\int_C \mathbf{F} \cdot d\mathbf{r}$ .

**Problem 5.** Let  $\mathbf{F} = \langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \rangle$ . Evaluate  $\int_C \mathbf{F} \cdot d\mathbf{r} =$ \_\_\_\_\_\_ where *C* is the path around the origin p = (0, 0) as shown:



**Problem 6.** Let S be the surface  $z = x\sqrt{3} + y^2$ , for  $-1 \le x \le 1$  and  $0 \le y \le 1$ . Evaluate  $\iint_{S} x^2 y \, dS$ .

**Problem 7.** Let S be the upper hemisphere:  $x^2 + y^2 + z^2 = 1$ ,  $z \ge 0$ . Let C be the boundary of S in the xy-plane. Do NOT compute the following integrals. (a) Explain why  $\int_C xyz \, ds = 0$ . (b) Explain why  $\iint_S xyz \, dS = 0$ .