Date: October 24, 2016

Professor Ilya Kofman

NAME:

Problem 1. Let $f(x,y) = (y-x)e^y$. Let x = 2s - t and y = st. Use the chain rule to compute $\frac{\partial f}{\partial s}$ at the point (s,t) = (5,3).

Problem 2. Find all the critical points of $f(x, y) = 6xy - x^3 - y^3$, and classify them using the Second Derivative Test.

Problem 3. Let $f(x, y) = 4x^2 + 9y^2$.

- (a) Use Lagrange multipliers to find the exterme value of f subject to the constraint 2x + 3y = 6.
- (b) Is this extremum a maximum or minimum? Explain.

Problem 4. Use Lagrange multipliers to find the maximum and minimum values of

$$f(x, y, z) = 2x + 6y + 10z$$

on the sphere, $x^2 + y^2 + z^2 = 35$.

Problem 5. Let $f(x, y) = 3x^2 + 2y^2 - 4y$.

- (a) Find critical points of f in the region $x^2 + y^2 < 9$.
- (b) Find the exterme values on the circle $x^2 + y^2 = 9$ using Lagrange multipliers.
- (c) Find the exterme values of f on $x^2 + y^2 \leq 9$ using the above information.