December 8, 2010 Professor Ilya Kofman Justify answers and show all work for full credit.

NAME:

Problem 1. Let C be the triangle in \mathbb{R}^2 with vertices (0,0), (1,0), (1,3). Use Green's Theorem to evaluate

$$\int_C \sqrt{1+x^3} \, dx + 2xy \, dy$$

Problem 2. Let $F(x, y, z) = (ze^{xz}, 0, xe^{xz})$. Let C be one turn of the helix,

 $C = \{ (\cos t, \sin t, t) \mid 0 \le t \le 2\pi \}.$

(a) Find f(x, y, z) such that $F = \nabla f$. (b) Compute $\int_C F \cdot d\mathbf{s}$.

Problem 3. Let $F(x, y, z) = (y^2, x, z^2)$. Let S be the part of the paraboloid $z = x^2 + y^2$ that lies below the plane z = 1, with normal oriented upward. Verify that Stokes' Theorem is true in this case by directly evaluating both integrals.

Problem 4. Let *E* be the solid cylinder $x^2 + y^2 \le 1$; $0 \le z \le 3$. Let F(x, y, z) = (x, y, -z).

(a) Directly evaluate the surface integral $\iint_{\partial E} F \cdot d\mathbf{S}$.

Note: ∂E consists of the cylindrical side as well as the flat top and bottom. It may help to parametrize the side by $T(\theta, z) = (\cos \theta, \sin \theta, z)$.

(b) Verify the answer above by applying one of our theorems.

Problem 5. An open bottle *B* lies on the *xy*-plane. Its volume is 750 $m\ell$. Its lip (or boundary) is the circle { $x^2+(z-1)^2 = 1$; y = 10 }. Let $F(x, y, z) = (2x+y^2, 3, x^2+4)$. Compute

$$\iint_B F \cdot d\mathbf{S}.$$

Problem 6. Suppose that F is a vector field in \mathbb{R}^3 that is everywhere perpendicular to a surface S with boundary C. Show that

$$\iint_{S} (\nabla \times F) \cdot d\mathbf{S} = 0.$$

Problem 7. (Bonus) If C is the ellipse $x^2 + 4y^2 = 4$ oriented counterclockwise, compute (and justify)

$$\int_C \frac{-y \, dx + (x-1) \, dy}{(x-1)^2 + y^2}$$