Calculus III (Math 233) Exam 2

November 10, 2010
Professor Ilya Kofman
Justify answers and show all work for full credit.

NAME: \qquad
Problem 1. Evaluate $\iint_{D} x^{2} d A$ where D is the region bounded by the parabolas $y=2 x^{2}$ and $y=1+x^{2}$.

Problem 2. Find the volume enclosed by the paraboloid $z=1+2 x^{2}+2 y^{2}$ and the plane $z=7$.

Problem 3. Change the order of integration to integrate $\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} \sin \left(x^{4}\right) d x d y$.

Problem 4. Let R be the region bounded by the lines $y+x=0$ and $y+x=5$, $y-x=0$ and $y-x=3$. Use the change of variables $x=\frac{u-v}{2}$ and $y=\frac{u+v}{2}$ (i.e., $u=x+y$ and $v=y-x)$ to evaluate $\iint_{R} 2(x+y) d A$.

Problem 5. Completely set up, but do not evaluate, the following integrals:
(a) The volume of the tetrahedron bounded by the plane $3 x+2 y+z=6$ in the first octant.
(b) The volume of ice-cream bounded by the cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=16$.

Problem 6. Evaluate $\iiint_{E} x^{2}+y^{2} d V$ where E is the solid bounded by the paraboloids $z=2-x^{2}-y^{2}$ and $z=x^{2}+y^{2}-2$.

Problem 7. Use Lagrange multipliers to find the maximum and minimum values of the function $f(x, y)=x^{2}+y^{2}-6 x+5$ on the ellipse $4 x^{2}+y^{2}=16$.

Problem 8. Find all the critical points of $f(x, y)=x^{2}-y^{2}+4 x+6 y-16$, and classify them using the Second Derivative Test.

CHANGE OF VARIABLES FORMULAS:

$$
\iint f(r, \theta) r d r d \theta, \text { where } x=r \cos \theta, y=r \sin \theta
$$

$\iiint f(\rho, \phi, \theta) \rho^{2} \sin \phi d \rho d \phi d \theta$, where $x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi$

$$
\iint f(u, v)\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v, \text { where } \frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\partial x / \partial u & \partial x / \partial v \\
\partial y / \partial u & \partial y / \partial v
\end{array}\right|
$$

