Calculus III (Math 233) Exam 1

Date: September 29, 2010
Justify answers and show all work for full credit.

NAME: \qquad

Problem 1. Find the equation of a plane containing the line $\ell(t)=(2+3 t,-t, 4+t)$ and passing through the point $P(0,2,-1)$.

Problem 2. The position of a particle is $\mathbf{r}(t)=(3 t, \sin 4 t, \cos 4 t)$.
(a) Find the speed of the particle $v(t)$.
(b) Find the unit tangent vector $\mathbf{T}(t)$.
(c) Find the unit normal vector $\mathbf{N}(t)$, and verify that $\mathbf{T}(t) \perp \mathbf{N}(t)$.
(d) Find the curvature $\kappa(t)$.
(e) Find the arclength for $\pi \leq t \leq 2 \pi$.

Problem 3. Let S be the surface $x^{2}+4 y^{2}-z^{2}=9$.
(a) Sketch the three traces of S, and then sketch S.
(b) Find the equation of the tangent plane to S at the point $P(-3,2,4)$.

Problem 4.

(a) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{2 x^{4}+y^{4}}$ does not exist.
(b) Let $h(x, y)=x \sin (x+2 y)$. Verify Clairaut's Theorem: $h_{x y}=h_{y x}$.

Problem 5. Assuming the earth is a round sphere, show that when you drive around in a car, your velocity vector is always tangent to the earth.

