Date: September 29, 2010

Professor Ilya Kofman

Justify answers and show all work for full credit.

NAME: _____

Problem 1. Find the equation of a plane containing the line $\ell(t) = (2+3t, -t, 4+t)$ and passing through the point P(0, 2, -1).

Problem 2. The position of a particle is $\mathbf{r}(t) = (3t, \sin 4t, \cos 4t)$.

- (a) Find the speed of the particle v(t).
- (b) Find the unit tangent vector $\mathbf{T}(t)$.
- (c) Find the unit normal vector $\mathbf{N}(t)$, and verify that $\mathbf{T}(t) \perp \mathbf{N}(t)$.
- (d) Find the curvature $\kappa(t)$.
- (e) Find the arclength for $\pi \leq t \leq 2\pi$.

Problem 3. Let S be the surface $x^2 + 4y^2 - z^2 = 9$.

- (a) Sketch the three traces of S, and then sketch S.
- (b) Find the equation of the tangent plane to S at the point P(-3, 2, 4).

Problem 4.

(a) Show that $\lim_{(x,y)\to(0,0)} \frac{x^3y}{2x^4+y^4}$ does not exist.

(b) Let $h(x, y) = x \sin(x + 2y)$. Verify Clairaut's Theorem: $h_{xy} = h_{yx}$.

Problem 5. Assuming the earth is a round sphere, show that when you drive around in a car, your velocity vector is always tangent to the earth.