Solutions to problems 2–5 for Sample Exam 2

2. C = Convergent, D = Divergent, GS = Geometric Series, IT = Integral Test, CT = Comparison Test, LCT = Limit Comparison Test, AST = Alternating Series Test, RT = Ratios Test.

(\mathbf{a})	C,~GS	(\mathbf{b})	C,~GS
(\mathbf{c})	C, p-series	(\mathbf{d})	C,~GS
(\mathbf{e})	C, IT	(\mathbf{f})	C, CT
(\mathbf{g})	$C, \ LCT$	(\mathbf{h})	$C, \ LCT$
(\mathbf{i})	D, LCT	(\mathbf{j})	D, Test for Divergence
(\mathbf{k})	C, AST	(\mathbf{l})	$D, AST, \lim \neq 0$
(\mathbf{m})	$D, \lim \neq 0$	(\mathbf{n})	C, AST
(\mathbf{o})	C, AST	(\mathbf{p})	C, RT
(\mathbf{q})	C, RT	(\mathbf{r})	D, RT

3. Find the radius of convergence of the following power series.

(a)
$$R = 3$$
 (b) $R = 1$ (c) $R = 2$ (d) $R = 3/2$

- 4. Find the interval of convergence of the following power series.
 - (a) $1 < x \le 3$ (b) -5 < x < -1 (c) 4/3 < x < 8/3(d) $1 - \sqrt[3]{2} < x < 1 + \sqrt[3]{x}$
- 5. Suppose that the series $\sum_{n=1}^{\infty} c_n (x-1)^n$ converges when x = 4 and diverges when x = 6. What can be said about the convergence or divergence of the following series ?
 - (a) Converges (b) Undecided (c) Converges