Sample problems for Exam 2 for Math 232 (Kofman)

- 1. Evaluate the following improper integrals. (a) $\int_{1}^{\infty} \frac{1}{(2x+1)^3} dx$ (b) $\int_{2}^{6} \frac{y}{\sqrt{y-2}} dt$ (c) $\int_{-\infty}^{0} e^{3t} dt$
- 2. Determine whether the following series converge or diverge. Indicate which test you are using.

3. Find the radius of convergence of the following power series.

(a)
$$\sum_{n=0}^{\infty} \frac{nx^n}{3^n}$$
 (b) $\sum_{n=0}^{\infty} \frac{(x-2)^n \sqrt{n}}{n^2+1}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^n (x+3)^{2n}}{4^n}$ (d) $\sum_{n=0}^{\infty} \frac{(n+1)(2x+1)^n}{3^{n+1}}$

4. Find the interval of convergence of the following power series.

(a)
$$\sum_{n=0}^{\infty} \frac{(2-x)^n}{3n+1}$$
 (b) $\sum_{n=0}^{\infty} \frac{(-1)^n (x+3)^{2n}}{4^n}$
(c) $\sum_{n=0}^{\infty} \frac{3^n (x-2)^n}{2^n}$ (d) $\sum_{n=1}^{\infty} \frac{n^2 (x-1)^{3n}}{2^n}$

5. Suppose that the series $\sum_{n=1}^{\infty} c_n (x-1)^n$ converges when x = 4 and diverges when x = 6. What can be said about the convergence or divergence of the following series ?

(a)
$$\sum_{n=1}^{\infty} c_n 2^n$$
 (b) $\sum_{n=1}^{\infty} c_n (-1)^n 3^n$ (c) $\sum_{n=1}^{\infty} c_n (-1)^n$

6. Find a power series representations of the following functions.

(a)
$$f(x) = \tan^{-1}(3x)$$
 (b) $f(x) = \frac{x^3}{(1+x)^2}$ (c) $f(x) = \ln(1+x)$
(d) $f(x) = e^{2(x-1)^2}$ (e) $f(x) = \frac{\sin(3x^2)}{x^3}$ (f) $f(x) = \int e^{x^2}$

7. Find Maclaurin series of the following:

(a)
$$f(x) = e^x$$
 (b) $f(x) = e^{5x}$ (c) $f(x) = \sin 2x$ (d) $f(x) = \cos 3x$

8. Find the Taylor series of the given function at the given point a.

$$\begin{array}{ll} ({\bf a}) \ f(x) = e^{2x}, \ \ a = 2 \\ ({\bf c}) \ f(x) = \sqrt{1+x}, \ \ a = 0 \end{array} \qquad ({\bf b}) \ f(x) = \frac{1}{x}, \ \ a = -3 \\ \end{array}$$

9. By recognizing each of the following series as a Taylor series evaluated at a particular value of x, find the sum of each of the following convergent series.

(a)
$$1 + \frac{2}{1!} + \frac{4}{2!} + \frac{8}{3!} + \dots + \frac{2^n}{n!} + \dots$$

(b) $1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \dots + \frac{(-1)^n}{(2n+1)!} + \dots$
(c) $1 + \frac{1}{4} + \frac{1}{16} - \frac{1}{64} + \dots + \frac{1}{4^n} + \dots$
(d) $1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \dots$

•

- 10. Find the Taylor or Maclaurin polynomial for the given function, for the given degree, centered at the given point.
 - (a) $f(x) = \frac{1}{x^2}$, n = 4, c = 1.
 - (b) $f(x) = \ln x, \ n = 4, = 2.$
 - (c) $f(x) = \sin(3x), \ n = 5, \ c = 0.$
 - (d) $f(x) = \sqrt{x}, n = 4, c = 1.$

Test	Description	Examples and Comments
geometric series	$\sum_{n=0}^{\infty} ar^n \text{converges to} \\ a/(1-r) \text{ if } r < 1 \text{ and} \\ \text{diverges if } r \ge 1.$	$\sum_{n=0}^{\infty} (1/2)^n \text{ converges to } 2;$ $\sum_{n=0}^{\infty} 2^n \text{ diverges.}$
Divergence test	If $ a_n $ does not converge to 0, then $\sum a_n$ diverges.	If $a_n \to 0$, then $\sum a_n$ may converge $(\sum 1/n^2)$ or it may not (the harmonic series $\sum 1/n$).
<i>p</i> -series	$\sum_{n=1}^{\infty} 1/n^p \text{diverges if} \\ 0 \le p \le 1 \text{ and converges if} \\ p > 1.$	
integral test	Suppose $a_n = f(n) \ge 0$ and f is decreasing. If $\int_1^\infty f(x)dx$ converges then $\sum a_n$ converges. If $\int_1^\infty f(x)dx$ diverges then $\sum a_n$ diverges.	Use this test whenever $f(x)$ can easily be integrated.
comparison test	Suppose $0 \le a_n \le b_n$. If $\sum b_n$ converges then $\sum a_n$ also converges. If $\sum a_n$ diverges, then $\sum b_n$ also diverges.	It is not necessary that $a_n \leq b_n$ for all n , only for $n \geq N$ for some integer N ; convergence or divergence of a series is not af- fected by the values of the first few terms.
ratio test	If $\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = L$ then $\sum a_n$ converges if $L < 1$ and diverges when $L > 1$.	This is often the easiest test to apply; note that if $L = 1$, then the series may either converge $(\sum 1/n^2)$ or diverge $(\sum 1/n)$.
root test	If $\lim_{n \to \infty} \sqrt[n]{ a_n } = L$ then $\sum a_n$ converges if $L < 1$ and diverges when $L > 1$.	To be used when a_n have exponents in terms of n (e.g. $\sum \frac{3^n}{n^n}$). Note that if $L = 1$, then the series may either converge $(\sum 1/n^2)$ or diverge $(\sum 1/n)$.
alternating series test	$\sum_{i=1}^{n} \sum_{n=1}^{\infty} (-1)^n a_n \text{ converges if}$ $(i) a_n \to 0 \text{ as } n \to \infty \text{ and}$ $(ii) 0 \le a_{n+1} < a_n.$	This test can only be applied when the terms are alternately positive and negative; if there are two or more positive (or neg- ative) terms in a row, then try another test.
absolute convergence test	If $\sum a_n $ converges, then $\sum a_n$ converges. ⁴	To determine whether $\sum a_n $ converges, try any of the tests that apply to series with nonnegative terms.