NAME: \qquad
Justify answers and show all work for full credit!
For \#1-8, determine convergence or divergence using any method we discussed. Justify!

1. $\sum_{n=1}^{\infty} \frac{n}{7 n^{4}+3}$
2. $\sum_{n=1}^{\infty} \frac{10^{n}+5}{n!}$
3. $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{3}}$
4. $\sum_{n=1}^{\infty} \frac{(-1)^{n} e^{n}}{e^{n}+n}$
5. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3 / 2}+n^{2 / 3}}$
6. $\quad \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{3 / 2}+n^{2 / 3}}$
7. $\sum_{n=3}^{\infty} \frac{\ln (n)}{\sqrt{n}}$
8. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}$
9. Find the sum for the series $\sum_{n=1}^{\infty} \frac{\sqrt{5^{n+3}}}{e^{n+2}}$.
10. Find the interval of convergence for the power series $\sum_{n=1}^{\infty} \frac{(5-3 x)^{n}}{2 n+7}$.
11. Find the interval of convergence for the power series $\sum_{n=1}^{\infty} \frac{(x-4)^{n}}{n^{2} 5^{n}}$.
12. Find a power series that represents $f(x)=\frac{x^{4}}{1+2 x^{3}}$.
(a) Give first 4 terms of the series.
(b) Give the series using Σ notation.
13. Evaluate the integral as an infinite series, $\int \sin \left(\frac{1}{x^{2}}\right) d x$.
(a) Give first 4 terms of the series. (b) Give the series using Σ notation.
14. Find the Taylor series centered at $a=3$ for $f(x)=\sqrt{x}$.
(a) Give first 4 terms of the series. (b) Give the series using Σ notation.
