NAME: \qquad
Justify answers and show all work for full credit!
For \#1-8, determine convergence or divergence using any method we discussed. Justify!

1. $\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{n+2}}{2^{n+1}}$
2. $\sum_{n=1}^{\infty} n^{2} e^{-n^{3}}$
3. $\sum_{n=1}^{\infty} \frac{n+5}{9^{n}}$
4. $\sum_{n=1}^{\infty} \frac{4^{n} n^{2}}{n!}$
5. $\sum_{n=1}^{\infty} \frac{n^{2}+2}{n^{3}+3}$
6. $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}+7}$
7. $\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln (n)}{\sqrt{n}}$
8. $\sum_{n=1}^{\infty} \frac{\pi^{7 n}}{e^{8 n}}$
9. Find the sum for the series $\sum_{n=1}^{\infty} \frac{2^{n+2}}{5^{n+1}}$.
10. Find the interval of convergence for the power series $\sum_{n=1}^{\infty} \frac{(2 x-4)^{n}}{3 n+5}$.
11. Find the interval of convergence for the power series $\sum_{n=1}^{\infty} \frac{(x+1)^{n}}{\sqrt{n} 3^{n}}$.
12. Find a power series that represents $f(x)=\ln \left(1+x^{3}\right)$.
(a) Give first 4 terms of the series. (b) Give the series using Σ notation.
13. Evaluate the integral as an infinite series, $\int \cos \left(x^{2}\right) d x$.
(a) Give first 4 terms of the series. (b) Give the series using Σ notation.
14. Find the Taylor series centered at $a=2$ for $f(x)=\frac{1}{x^{2}}$.
(a) Give first 4 terms of the series. (b) Give the series using Σ notation.
