NAME:

Justify answers and show all work for full credit!

For #1-8, determine convergence or divergence using any method we discussed. Justify!

- 1. $\sum_{n=1}^{\infty} \frac{(-1)^n 3^{n+2}}{2^{n+1}}$ 2. $\sum_{n=1}^{\infty} n^2 e^{-n^3}$
- 3. $\sum_{n=1}^{\infty} \frac{n+5}{9^n}$ 4. $\sum_{n=1}^{\infty} \frac{4^n n^2}{n!}$
- 5. $\sum_{n=1}^{\infty} \frac{n^2 + 2}{n^3 + 3}$ 6. $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 7}$
- 7. $\sum_{n=1}^{\infty} \frac{(-1)^n \ln(n)}{\sqrt{n}}$ 8. $\sum_{n=1}^{\infty} \frac{\pi^{7n}}{e^{8n}}$
- 9. Find the sum for the series $\sum_{n=1}^{\infty} \frac{2^{n+2}}{5^{n+1}}$.

10. Find the interval of convergence for the power series $\sum_{n=1}^{\infty} \frac{(2x-4)^n}{3n+5}.$

- 11. Find the interval of convergence for the power series $\sum_{n=1}^{\infty} \frac{(x+1)^n}{\sqrt{n} \, 3^n}.$
- 12. Find a power series that represents $f(x) = \ln(1 + x^3)$.

(a) Give first 4 terms of the series. (b) Give the series using Σ notation.

- 13. Evaluate the integral as an infinite series, ∫ cos(x²) dx.
 (a) Give first 4 terms of the series. (b) Give the series using Σ notation.
- 14. Find the Taylor series centered at a = 2 for f(x) = 1/x².
 (a) Give first 4 terms of the series. (b) Give the series using Σ notation.