Review for Exam 1 on Wednesday Feb 23, 2011

MTH/SLS 218-6816

Professor Ilya Kofman
Note: CSI follows a Monday schedule on $2 / 23$ so we will meet in $1 \mathrm{~S}-107$.

1. Polyhedra (8.6)
(a) Prisms and pyramids: names, faces, right vs oblique (8FF, HH)
(b) Regular polyhedra $=$ Platonic solids: names, faces, properties (8JJ)
(c) Euler's formula for polyhedra: $V-E+F=2$ (8LL)
2. Angles (8.2)
(a) Vertical angles, angles related to parallel lines (8H)
(b) Angles in a diagram with intersecting lines
(c) Exterior angles and rotation (8L)
(d) Application: Phases of the moon (8 F)
3. Triangles (8.2)
(a) Scalene, right, isosceles, acute, obtuse
(b) Euclid's parallel postulate (8J)
(c) Angle sum in a triangle $=180^{\circ}(8 \mathrm{I}, \mathrm{J})$
4. Polygons (8.4)
(a) Concave vs. convex
(b) Angle sum in a convex polygon $=(n-2) \cdot 180^{\circ}$
(c) Vertex angle of a regular polygon $=\frac{(n-2) \cdot 180^{\circ}}{n}$
(d) Table of vertex angles \& faces per vertex to explain why there are only 5 regular polyhedra, and 3 regular tilings of the plane (8KK)
5. Quadrilaterals (8.4)
(a) Be able to fill in properties in our chart
(b) Venn diagrams that describe relationships (8Z, AA, CC)
6. Compass and straightedge constructions (8.5)
(a) Equilateral triangle (8W)
(b) Hexagon (see 8V)
(c) Perpendicular bisector of a line segment
(d) Perpendicular to a line through a given point
(e) Copy an angle
(f) Bisect an angle
(g) Parallel line through a given point
(h) Square and octagon (8EE)
(i) Justify a construction using properties of rhombus and/or kite (8DD)
7. Circles and spheres (8.3)
(a) Distance and radius (8S)
(b) Intersections and GPS (8U)
