MTH/SLS 218–6816 Exam 2

	March 28, 2011 Professor Ilya Kofman
	NAME: Key
	$1 \text{ in} = 2.54 \text{ cm}, \qquad 1 \text{ kg} = 2.2 \text{ lbs} \qquad 1 \text{ gal} = 3.79 \ell$
)	Problem 1. A recipe that serves 6 calls for 2 Tbsp vegetable oil, 4 pints of stock, $\frac{2}{3}$ lbs of peas, and 5 eggs. Note that 16 Tbsp = 1 cup. If the cafeteria needs to serve 1000, it must buy:
	(a) How many gallons of vegetable oil? [1.3. gal]
	$\frac{1000}{6} \cdot 276s \cdot \frac{1}{1676}sp \cdot \frac{1}{16} \frac{gallon}{16} = \frac{2000}{1536} gal$ (b) How many liters of stock? 315.8 l
	$\frac{1000}{6} \cdot 4 \text{ pts} \cdot \frac{1 \text{ gal}}{8 \text{ pts}} \cdot \frac{3.79 \text{ l}}{9 \text{ al}} = \frac{(4000)(3.79)}{48} \text{ l} = [315].$
	(c) How many kilograms of peas?
	$\frac{1000}{6} \cdot \frac{2}{3} los \cdot \frac{1 kg}{2.2 los} = 50.5 kg$
	(d) How many dozens of eggs?
	1000. 5eggs. 1 dozen 6 . 5eggs - 1 dozen = 69.4 => 70 dozen eg
	Problem 2. Standard copy paper is 8.5 inches by 11 inches.
	(a) How many square millimeters (mm^2) is one sheet of copy paper?
	$(8.5)(11)$ in ² × $\left(\frac{2.54 \text{ cm}}{1 \text{ in}}\right)^2 \times \left(\frac{10 \text{ mm}}{1 \text{ cm}}\right)^2 = 60,322 \text{ mm}^2$
	(b) One acre is 43,560 sq ft. How many pieces of copy paper will cover one acre?

43,560 ft² ×
$$\left(\frac{12 \text{ in}}{1 \text{ ft.}}\right)^2$$
 × $\frac{1 \text{ paper}}{(8.5)(11) \text{ in}^2} = 67,087 \text{ papers}$

10² = 25²

30

Problem 3. (a) How many km is 72,531 mm?

(b) How many km is 5.4 miles?

(c) How fast is 3 cm/sec in miles per hour?

(d) The current price of gasoline in France is 1.58 Euros per liter. Now, \$1 is 0.71 Euros. How much is gasoline in France in dollars per gallon?

$$1.58 Euro \times \frac{\$1}{l} \times \frac{3.79l}{1 gal} = \$8.43/gal$$

Problem 4. Jack reports that a pail weighs 4.7 lbs. Jill can weigh things in pounds to three decimal places. If Jill weighs the pail, what weight range could she report?

- **Problem 5.** In $\triangle ABC$, $\angle BDC$ is a right angle, but do <u>not</u> assume that $\angle ABC$ is a right angle.
 - (a) Find the area of $\triangle ABC$.

(b) Find the perimeter of $\triangle ABC$.

$$q^{2} + (BD)^{2} = (AB)^{2} \implies q^{2} + 12^{2} = (AB)^{2} \implies AB = 15$$

Perimeter (JABC) = 15 + 20 + 25 = 60(c) Determine whether $\angle ABC$ is a right angle. Justify.

Yes, since $(AB)^2 + (20)^2 = (25)^2$ (Pythasorean Thm.) $15^2 + 20^2 = 25^2$ 40

Problem 8. The dots below are spaced 1 cm apart. Determine the area of the shaded figure. Show work.

6

Problem 9. A construction company has dump trucks that hold 7 cubic yards. If the company digs a hole that is 12 feet deep, 17 feet wide, and 30 feet long, then how many dump trucks will they need to haul away the dirt dug from this hole?

$$Iol(hole) = \underbrace{12 \cdot 17 \cdot 30}_{GIZO} ft^{3} \times \left(\frac{1 \text{ yd}}{3 \text{ st.}}\right)^{3} = 226.7 \text{ yd}^{3}$$

$$\frac{226.7}{7} = 32.4 \implies 33 \text{ dump trucks}$$

- Problem 10. A square with side length 6 cm is the base of a square pyramid, which has height 4 cm. Show work below, and use correct units.
 - (a) What is the slant height of the pyramid?

(b) Compute the surface area of the pyramid (including the base).

$$4 \cdot \frac{1}{2}(6)(5) + (6)^2 = 96 \text{ cm}^2$$

(c) Compute the volume of the pyramid.

$$\frac{1}{3}(36)(4) = 48 \text{ cm}^3$$

(d) If a little cube with side length 5 mm is filled with water, how many such cubes will fill the pyramid?

Each cube
$$vol = (\frac{1}{2} cm)^3 = -\frac{1}{8} cm^3$$

cubes = $(48)(8) = 384$ cubes
 $cm^3 cm^3 cm^3 employed$

15 Problem 11. (BONUS) A cone will be made from the quarter-disc shown.

(a) Find the surface area of the cone.

20+15

$$SA = \frac{1}{4}\pi(8)^2 = 16\pi$$

(b) Find the radius r of the cone. (Hint: Use circumference.)

(c) Find the volume of the cone. (Hint: Find the height.)

 $r^{2} + h^{2} = s^{2}$ $r^{2} + h^{2} = s^{2}$ $r^{2} + h^{2} = s^{2}$ $V = \frac{1}{3} \pi r^{2} h = \frac{1}{3} \pi (2^{2}) \sqrt{60} = \frac{4\pi \sqrt{60}}{3}$ ~ 3945 Jan 3

8