MTH/SLS 218-6816 Exam 2

March 28, 2011
Professor Ilya Kofman

NAME:

20 Problem 1. A recipe that serves 6 calls for 2 Tbsp vegetable oil, 4 pints of stock, $\frac{2}{3} \mathrm{lbs}$ of peas, and 5 eggs. Note that $16 \mathrm{Tbsp}=1$ cup. If the cafeteria needs to serve 1000, it must buy:
(a) How many gallons of vegetable oil? \qquad

$$
\frac{1000}{6} \cdot 2+b s \cdot \frac{1 \mathrm{cup}}{16 \text { Ts sp }} \cdot \frac{1 \text { gallon }}{16 \text { cups }}=\frac{2000}{1536} \mathrm{gal}
$$

(b) How many liters of stock? \qquad
(c) How many kilograms of peas? \qquad

$$
\frac{1000}{6} \cdot \frac{2}{3} \mathrm{lds} \cdot \frac{1 \mathrm{~kg}}{2.2 \mathrm{lds}}=50.5 \mathrm{~kg}
$$

(d) How many dozens of eggs?

$$
\frac{1000}{6} \cdot 5 \text { eggs } \cdot \frac{1 \text { dozen }}{12 \text { eggs }}=69.4 \Rightarrow 70 \text { dozen eggs }
$$

10 Problem 2. Standard copy paper is 8.5 inches by 11 inches.
(a) How many square millimeters $\left(\mathrm{mm}^{2}\right)$ is one sheet of copy paper?

$$
(8.5)(11) \mathrm{in}^{2} \times\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}\right)^{2} \times\left(\frac{10 \mathrm{~mm}}{1 \mathrm{~cm}}\right)^{2}=60,322 \mathrm{~mm}^{2}
$$

(b) One acre is $43,560 \mathrm{sq} \mathrm{ft}$. How many pieces of copy paper will cover one acre?

$$
43,560 \mathrm{ft}^{2} \times\left(\frac{12 \mathrm{in}}{1 \mathrm{lft}}\right)^{2} \times \frac{1 \text { paper }}{(8,5)(1)^{\mathrm{in}^{2}}}=67,087 \text { papers }
$$

$$
0.072531 \mathrm{~km}
$$

(b) How many $k m$ is 5.4 miles?

$$
5.4 \mathrm{mi} \times \frac{5280 \mathrm{ft}}{1 \mathrm{mi}} \times \frac{12 \mathrm{in}}{1 \mathrm{f1}} \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} \times \frac{1 \mathrm{~km}}{100,000 \mathrm{~cm}}=8.7 \mathrm{~km}
$$

(c) How fast is $3 \mathrm{~cm} / \mathrm{sec}$ in miles per hour?

$$
3 \frac{\mathrm{~cm}}{\mathrm{sec}} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}^{2}} \times \frac{1 \mathrm{ft}}{12 \mathrm{in}} \times \frac{1 \mathrm{mile}}{5280 \mathrm{ft} .} \times \frac{60 \mathrm{sec}}{1 \mathrm{~min}} \times \frac{60 \mathrm{~min}}{1 \mathrm{hr} .}=0.067 \frac{7 \text { miles }}{\mathrm{hr} .}
$$

(d) The current price of gasoline in France is 1.58 Euros per liter. Now, $\$ 1$ is 0.71 Euros. How much is gasoline in France in dollars per gallon?

$$
1.58 \frac{\text { Euro }}{l} \times \frac{\$ 1}{0.71 \text { Euro }} \times \frac{3.79 \mathrm{l}}{1 \mathrm{gal}}=\$ 8.43 / \mathrm{gal}
$$

5
Problem 4. Jack reports that a pail weighs 4.7 lbs . Jill can weigh things in pounds to three decimal places. If Jill weighs the pail, what weight range could she report?

$$
4.650-4.749
$$

15 Problem 5. In $\triangle A B C, \angle B D C$ is a right angle, but do not assume that $\angle A B C$ is a right angle.
(a) Find the area of $\triangle A B C$.

$$
\begin{aligned}
16^{2}+(B D)^{2} & =20^{2} \\
B D & =\sqrt{20^{2}-16^{2}}=12 \\
\text { Area }(\triangle A B C & =\frac{1}{2}(12)(9+16) \\
& =150
\end{aligned}
$$

(b) Find the perimeter of $\triangle A B C$.

$$
9^{2}+(B D)^{2}=(A B)^{2} \Rightarrow 9^{2}+12^{2}=(A B)^{2} \Rightarrow A B=15
$$

Perimeter $(D A B C)=15+20+25=60$
(c) Determine whether $\angle A B C$ is a right angle. Justify.

Yes, since $(A B)^{2}+(20)^{2}=(25)^{2} \quad$ (Pg thasorean Them.)

$$
15^{2}+20^{2}=25^{2}
$$

6 Problem 6. Justify $A=\frac{1}{2} b h$ for $\triangle X Y Z$, using rectangles and/or right triangles.

$$
\begin{aligned}
& 7(a+5)=\alpha(7 a)\left(\frac{1}{2}\right) \\
&+2 \text { Area }(\triangle X Y Z) \\
& \Rightarrow 7.5=2 \text { Area }(\Delta X Y Z) \\
& \Rightarrow \text { Area }(\text { AXYZ })=\frac{1}{2}(7)(5)
\end{aligned}
$$

Problem 7. Find the area of the shaded region. (Leave π in your answer.)

$$
\begin{aligned}
\text { Area } & =(12)(12)-?_{12}+\frac{1}{6} \pi(6)^{2}+\pi(3)^{2} \\
& =144-\frac{1}{2} \\
& =144-9 \pi
\end{aligned}
$$

6 Problem 8. The dots below are spaced 1 cm apart. Determine the area of the shaded figure. Show work.

$$
\begin{aligned}
A & =\square+V+D \\
& =(3)(4)+\frac{1}{2}(1)(3)+\frac{1}{2}(3)(3) \\
& =18
\end{aligned}
$$

6 Problem 9. A construction company has dump trucks that hold 7 cubic yards. If the company digs a hole that is 12 feet deep, 17 feet wide, and 30 feet long, then how many dump trucks will they need to haul away the dirt dug from this hole?

$$
\begin{aligned}
\text { Vol }(\text { hole }) & =\underbrace{12.17 .30}_{\text {ci20 }} \mathrm{ft}^{3} \times\left(\frac{1 \mathrm{yd}}{381}\right)^{3}=226.7 \mathrm{yd}^{3} \\
\frac{226.7}{7} & =32.4 \Rightarrow 33 \text { dump tricks }
\end{aligned}
$$

20 Problem 10. A square with side length 6 cm is the base of a square pyramid, which has height 4 cm . Show work below, and use correct units.
(a) What is the slant height of the pyramid?

$$
s=5 \mathrm{~cm} \quad\left(3^{2}+4^{2}=s^{2}\right)
$$

(b) Compute the surface area of the pyramid (including the base).

$$
4 \cdot \frac{1}{2}(6)(5)+(6)^{2}=96 \mathrm{~cm}^{2}
$$

(c) Compute the volume of the pyramid.

$$
\frac{1}{3}(36)(4)=48 \mathrm{~cm}^{3}
$$

(d) If a little cube with side length 5 mm is filled with water, how many such cubes will fill the pyramid?

$$
\begin{aligned}
& \text { Each cube vol }=\left(\frac{1}{2} \mathrm{~cm}^{3}=\frac{1}{8} \mathrm{~cm}^{3}\right. \\
& \text { \# cubes }=\left(\begin{array}{c}
48 \\
\mathrm{~cm}^{3} \\
(8) \\
\text { curbes/cm }{ }^{3}
\end{array}=384\right. \text { cubes }
\end{aligned}
$$

15 Problem 11. (BONUS) A cone will be made from the quarter-disc shown.
(a) Find the surface area of the cone.

$$
S A=\frac{1}{4} \pi(8)^{2}=16 \pi
$$

(b) Find the radius r of the cone. (Hint: Use circumference.)

$$
2 \pi r=\frac{1}{4}(2 \pi \cdot 8) \Rightarrow r=2
$$

$$
\Delta
$$

(c) Find the volume of the cone. (Hint: Find the height.)

$$
\left.\begin{array}{l}
r^{2}+h^{2}=s^{2} \\
2^{2}+h^{2}=8^{2}
\end{array}\right\} \begin{aligned}
& h=\sqrt{64-4}=\sqrt{60} \\
& V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi\left(2^{2}\right) \sqrt{60}=\frac{4 \pi \sqrt{60}}{3}
\end{aligned}
$$

