MTH 218-6816 Exam 1
February 23, 2011
Professor Ilya Kofman

NAME: \qquad

2 (a) If $B C E F$ is a rectangle, what is this figure called precisely?
Right triangular prism
2 (b) If $\angle C B F$ is obtuse, what is this figure called precisely?
Oblique triangular prism
3 (c) Verify Euler's formula for this figure.

$$
\begin{array}{ll}
\text { riff Euler's formula for this figure. } \\
V=6 & V-e+f=2 \\
e=9 & 6-9+5=2 \\
f=5 &
\end{array}
$$

Problem 2. (a) If a prism has a 50 -on for its base, how many vertices, edges and faces does it have? Verify Euler's formula for this prism.

$$
\begin{array}{ll}
v=100 & v-e+f=2 \\
e=150 & 100-150+52=2 \\
f=52 &
\end{array}
$$

(b) If a prism has 120 edges, how many vertices and faces does it have? Verify Euler's formula for this prism.

$$
\begin{array}{ll}
v=80 & v-e+f=2 \\
e=120 & 80-120+42=2 \\
f=42 &
\end{array}
$$

Problem 3. (a) What is the measure of an interior angle of a regular decagon?

$$
\frac{180(n-2)}{n}=\frac{180 \cdot 8}{10}=144^{\circ}
$$

(b) Explain why it cannot be the face of a regular polyhedron.

$$
3 \text { decarons/vertex } \Rightarrow 3 \times 144=432>360
$$

Angle sum too biog,

6 Problem 4. One semiregular tiling of the plane consists of these three regular polygons at every vertex: a dodecagon (12-gon), a square, and what other polygon? Justify.

$$
\left.\begin{array}{rl}
12 \text {-gan }=\frac{180 \cdot 10}{12}=150^{\circ} \\
\text { square }=90^{\circ}
\end{array}\right\} \begin{aligned}
& 360-(150+90) \\
& \\
& =120^{\circ}
\end{aligned}
$$

So $n=6, \frac{180.4}{6}=120$ ie hexagon.
6 Problem 5. Consider the earth and moon as shown.
(a) Is the moon new $\left(\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\right.$, or full?
(b) Is it waxing or waning?

2043 . each

$$
\begin{aligned}
& a=130 \\
& b=\frac{90}{140} \\
& c=\frac{60}{6} \\
& d=\frac{110}{e}
\end{aligned}
$$

10 Problem 7. Convex or concave?
(a) Trapezoid
(b) Obtuse triangle \qquad
(c) Two regular hexagons glued along a common edge \qquad
(d) Regular polyhedron
(e) Oblique pyramid \qquad describes their relationship.

overlapping
(a) Rectangles and kites

Epos. each
(b) Rhombi and parallelograms

disjoint

subset

Overlapping subset
(c) Rhombi and quadrilaterals with congruent diagonals
overlapping
(d) Rectangles and trapezoids subset
(e) Kites and squares Subset
(f) Isosceles triangles and obtuse triangles $\frac{\text { overlapping }}{\text { overlapping }}$
(g) Regular polyhedra and pyramids $\frac{\text { oven }}{\text { (h) Prisms and pyramids }} 1$ disjoint
(2 Problem 9. Among parallelograms, rectangles, rhombi, and isosceles trapezoids, list all for which the following statements always true:
(a) Adjacent angles are congruent. \qquad rectangles, isOSC. trapezoids
2 pts.
(b) Opposite angles are congruent. parallel, rectangles, rhombs each
(c) Diagonals bisect angles. rhombs
(d) Diagonals are congruent. \qquad
(e) Diagonals cross at right angles. rhombs
(f) Diagonals cross at midpoints. \qquad parallelosrans, rectangles, rhousi

6 Problem 10. In $\triangle A B C, \angle A=30^{\circ}$ and $\angle B=70^{\circ}$. Use either Euclid's Parallel Postulate or the rotation angles method to precisely explain why $\angle C=80^{\circ}$.

By. Euclid's Parallel Postulate, there is a lin parallel to AC thresh B. Then

$$
\begin{aligned}
x+y+z=180 & \Rightarrow 30+70+\angle C=180 \\
& \Rightarrow \angle C=80 .
\end{aligned}
$$

Travelling around $A A B C$ means turning 360°

$$
\begin{aligned}
& u+v+w=360 \Rightarrow 150+v+110=360 \\
& \Rightarrow v=100 \Rightarrow \angle c=80
\end{aligned}
$$

