MTH/SLS 218-6816 Exam 2

March 31, 2008
Professor Ilya Kofman

NAME:

$$
1 \mathrm{in}=2.54 \mathrm{~cm}, \quad 1 \mathrm{~kg}=2.2 \mathrm{lbs} \quad 1 \mathrm{gal}=3.79 \ell
$$

Problem 1. A right rectangular prism is 4 ft long, 2 ft wide, 3 ft deep.
(a) What is the volume of the prism?

$$
24 \mathrm{ft}^{3}
$$

(b) If a cube 6 in by 6 in by 6 in is filled with water, how many such cubes will fill

$$
\begin{aligned}
& \text { each : }\left(\frac{1}{2} \mathrm{ft} .\right)^{3}=\frac{1}{8} \mathrm{ft}^{3} / \text { cube } \left\lvert\, \begin{array}{c}
24 \mathrm{ft}^{3} \times \frac{8 \mathrm{cubes}}{18 \mathrm{t}^{3}} \\
=192 \mathrm{cubes}
\end{array}\right.
\end{aligned}
$$

Problem 2. (a) Explain the difference between an ounce and a fluid ounce.

$$
\begin{aligned}
& \text { Ounce }=\text { unit of weight (mass) } \\
& f 1 .^{\text {oz }}=\text { unit of volume }
\end{aligned}
$$

(b) How many $m \ell$ are in 1 pt ?

$$
1 \mathrm{pt} \times \frac{1 \mathrm{gace}}{8 p \mathrm{l}} \times \frac{3.79 \mathrm{l}}{\mathrm{gql}} \times \frac{1000 \mathrm{ml}}{1 \mathrm{l}}=473 \mathrm{ml}
$$

(c) Which is more water, a pound or a pint of water? Justify. Use $1 \mathrm{ml}=\lg$ water.

$$
\begin{aligned}
& 1 \text { pt } \times \frac{473 \mathrm{ml}}{p+} \times \frac{1 \mathrm{~g}}{1 \mathrm{ml}}=473 \mathrm{~g} \leftarrow \text { pint is more } \\
& 116 \times \frac{1 \mathrm{~kg}}{2.218 \mathrm{~s}} \times \frac{1000 \mathrm{~g}}{\mathrm{~kg}}=454 \mathrm{~g}
\end{aligned}
$$

(d) Which is more, 1 oz or 1 fl oz of water? $(1 \mathrm{lb}=16 \mathrm{oz}$, and $1 \mathrm{pt}=16 \mathrm{fl} \mathrm{oz})$

$$
\begin{array}{ll}
1 \mathrm{floz}=\frac{473}{16} \mathrm{~g} \quad \mathrm{floz} \text { is more } & 29.6 \mathrm{~g} \\
1 \text { ot }= & \frac{454}{16} \mathrm{~g}
\end{array} \quad 28.4 \mathrm{~g} .
$$

Problem 3. (a) How many kilograms is one million centigrams?
(b) One acre is $43,560 \mathrm{sq} \mathrm{ft}$. What is a square mile in acres?

$$
1 \text { sq mi } *\left(\frac{5280 \mathrm{ft}}{1 \mathrm{mi}_{i}}\right)^{2} \times \frac{1 \text { acre }}{43560 \mathrm{ft}^{2}}=\frac{5280^{2}}{43560} \text { acres }=640 \text { acres }
$$

(c) The peregrine falcon is the fastest animal on earth, clocked diving at $80 \mathrm{~m} / \mathrm{sec}$.

How fast is that in miles per hour?

$$
80 \frac{m_{1}}{\mathrm{sec}} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \times \frac{1 \mathrm{ft}}{12 \mathrm{in}} \times \frac{1 \mathrm{mi}}{5280 \mathrm{ft}} \times \frac{60 \mathrm{sec}}{1 \mathrm{~min}} \times \frac{60 \mathrm{mi}}{1 \mathrm{hr}}=179 \mathrm{mpl}
$$

(d) The density of lead is $11 \mathrm{~g} / \mathrm{m} \ell$. What is that in pounds per gallon?

$$
11 \mathrm{~g} / \mathrm{ml} \times \frac{1 \mathrm{Kg}}{1000 \mathrm{~g}} \times \frac{2.2 \mathrm{hss}}{\mathrm{~kg}} \times \frac{1000 \mathrm{cl}}{1 \mathrm{l}} \times \frac{3.79 \mathrm{l}}{\mathrm{gal}}=92 \mathrm{lbs} / \mathrm{gal}
$$

(e) The distance to Chicago is 800 miles. The distance to the moon is $380,000 \mathrm{~km}$.

$$
\begin{array}{r}
800 \mathrm{mi} \frac{1.6 \mathrm{~km}}{\mathrm{mi}} \\
=1280 \mathrm{~km} \\
\frac{380,000}{1280}=295
\end{array}
$$

BONUS (f) A company produces 1500 toys per year. If one cup of glaze covers 5 toys, how many liters of glaze are needed each month?

$$
1500 \frac{\text { togs }}{\mathrm{gr}} \times \frac{1 \mathrm{cup}}{5 \text { toys }} \times \frac{1 \mathrm{gal}}{16 \mathrm{cups}} \times \frac{3.79 \mathrm{l}}{\mathrm{gal}} \times \frac{1 \mathrm{gr}}{12 \text { montes }}=5.9 \mathrm{l} / \mathrm{month}
$$

Bourg Problem 4. The diameter of a human hair is about $50 \mu \mathrm{~m}$. ($1 \mu \mathrm{~m}$ is called a micron. $1 \mathrm{~mm}=1000$ microns.) If you laid hairs that are 1 in long next to each other, how many hairs would be needed to cover 1 square inch?

5 pts each

$$
25+10
$$

Problem 5. (a) If the dots are spaced 1 cm apart, compute the area of the quadrilateral shown.

4 triangles area:

$$
\begin{aligned}
& \frac{1}{2}(3 \cdot 3)+\frac{1}{2}(2 \cdot 4)+\frac{1}{2}(2 \cdot 4)+\frac{1}{2}(1 \cdot 3) \\
= & 14 \mathrm{~cm}^{2}
\end{aligned}
$$

(b) What is the area of a quadrilateral with perpendicular diagonals that are 8 cm and 10 cm long?

$$
\frac{1}{2}(8 \cdot 10)=40 \mathrm{~cm}^{2}
$$

Problem 6. Recall our proof of the Pythagorean Theorem. Given four copies of a right triangle with sides a, b, c such that $a^{2}+b^{2}=c^{2}$, what is the area of the shaded region?

Problem 7. (a) A kite is flying on a 25 m line, and its shadow is 7 m away. If the sun is directly overhead, how high is the kite? Justify.

$$
\sqrt{25^{2}-7^{2}}=24 m
$$

(b) If a triangle has side lengths $8,15,18$, can it be a right triangle? Justify.

$$
\text { No. } 8^{2}+15^{2} \neq 18^{2}
$$

(c) What is the longest pole that can fit in a box that is 4 feet long, 3 feet wide, and 5 feet tall? Show work.

$$
\sqrt{4^{2}+3^{2}+5^{2}}=\sqrt{50}=5 \sqrt{2} \approx 7.1 \mathrm{ft} .
$$

5 pts call

Problem 8. (a) Compute the area of region A. (b) Compute area of region B. Show work.

(15 ph.)
Problem 9. (BONUS) Sam reports that a plate weighs 2 lbs . Alice reports that a vase weighs 2.0 lbs . Bob can weigh things in pounds to two decimal places.
(a) If Alice weighs the plate, what weight range could she report?

$$
1.5-2.4 \mathrm{lbs}
$$

(b) If Bob weighs the vase, what weight range could he report?

$$
1.95-2.04 \mathrm{lbs}
$$

(c) If Bob weighs the plate, what weight range could he report?

$$
1.50-2.49 \mathrm{lbs}
$$

