February 27, 2008

NAME: \qquad

Problem 1. Consider an equilateral $\triangle A B C$. A person begins walking straight at point A, turns at B and then at C, and returns to A but does not turn. What is the total number of degrees that the walker has turned? Justify your answer.

Problem 2. (a) If a pyramid has a 100-gon for its base, how many vertices, edges and faces does it have?
(b) If a pyramid has 14 edges, how many faces does it have?
(c) Verify that your numbers in (a) and (b) satisfy Euler's formula.

Problem 3. What fact about intersecting spheres enables three GPS satellites to determine your exact location on Earth?

Problem 4. What fact about the interior angles of a regular octagon shows that a regular polyhedron cannot have octagonal faces?

Problem 5. Consider the earth and moon as shown.
(a) Is the moon new, $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$, or full?
(b) Is it waxing or waning?

Problem 6. For each of the following pairs, identify which type of Venn diagram describes their relationship.

overlapping

disjoint

subset
(a) Concave shapes and polygons
(b) Convex shapes and parallelograms
(c) Isosceles triangles and right triangles
(d) Rectangles and regular quadrilaterals
(e) Platonic solids and pyramids
(f) Prisms and spheres
(g) Parallelograms and rhombi
(h) Kites and rhombi

Problem 7. Among parallelograms, rectangles, rhombi, and isosceles trapezoids, for which ones are the following statements always true:
(a) Diagonals are the same length. \qquad
(b) Diagonals bisect angles.
(c) Diagonals cross at right angles. \qquad

Problem 8. Find the missing angle measures indicated by letters in the diagram below. Two parallel lines are indicated by arrows.

Compass and straightedge constructions. Please do each one separately.

Problem 9. A \qquad B

Given segment $A B$, construct an equilateral triangle with side $A B$.

Problem 10. Draw an angle that is approximately 60°. Precisely bisect this
angle.

Problem 11. A \qquad B

Given segment $A B$, draw a point C above it. Construct a line parallel to $A B$ through C by copying an angle.

BONUS 12. A \qquad B C \qquad D

Construct a rectangle with given sides $A B$ and $C D$.

