Math 123 Exam 3
December 4, 2013
NAME:
No calculators allowed on this exam.

1. The point $P(x, y)$ is on the unit circle in quadrant II. If $y=\frac{2}{\sqrt{7}}$, find x.
2. (a) Draw the terminal point $P(t)$ on the unit circle corresponding to $t=\frac{7 \pi}{6}$.
(b) The reference angle $=$ \qquad
(c) $\sin (t)=$ \qquad
(d) $\cos (t)=$ \qquad
3. Determine the trigonometric function for the graph shown below.

amplitude $=$ \qquad period $=$ \qquad phase shift= \qquad

$$
y=
$$

\qquad
4. Find the exact value:
(a) $\cos \left(\frac{5 \pi}{6}\right)=$ \qquad
(b) $\sin \left(\frac{2 \pi}{3}\right)=$ \qquad
(c) $\tan \left(\frac{3 \pi}{4}\right)=$ \qquad
(d) $\csc \left(\frac{\pi}{4}\right)=$ \qquad
(e) $\sec \left(\frac{11 \pi}{6}\right)=$ \qquad
(f) $\sin \left(\frac{3 \pi}{2}\right)=$ \qquad
(g) $\cos \left(-\frac{\pi}{4}\right)=$ \qquad
(h) $\tan \left(-\frac{\pi}{3}\right)=$ \qquad
(i) $\csc (3 \pi)=$ \qquad
(j) $\sec \left(-\frac{2 \pi}{3}\right)=$ \qquad
5. If $\cos t=\frac{12}{13}$, with terminal point $P(t)$ in quadrant IV, find the exact value:
(a) $\sin t=$ \qquad
(b) $\tan t=$ \qquad
(c) $\sec t=$ \qquad
(d) $\csc t=$ \qquad
(e) $\cot t=$ \qquad

Exam 3B page 3 of 4
6. Let $y=-4 \cos \left(\frac{1}{2} x\right)$. Sketch one period. Label the x-intercepts, and the max \& min values on the y-axis.
(a) amplitude= \qquad
(b) period $=$ \qquad
(c) phase shift= \qquad

7. Let $y=2 \sin \left(3 x+\frac{\pi}{2}\right)$. Sketch one period. Label the x-intercepts, and the max $\&$ min values on the y-axis.
(a) amplitude= \qquad
(b) period $=$ \qquad (c) phase shift= \qquad

8. Let $y=\tan \left(x-\frac{\pi}{4}\right)$. Sketch one period. Label the x-intercepts. (a) period $=$ \qquad

9. A mass suspended from a spring oscillates in simple harmonic motion at a frequency of 6 cycles per second. The distance between the highest and lowest point of the oscillation is 20 cm . The mass is at its lowest point at time $t=0$.
(a) Find an equation $y=f(t)$ that describes the displacement of the mass as a function of time.
(b) amplitude= \qquad period $=$ \qquad phase shift= \qquad
(c) Graph the function $y=f(t)$.

