Math 123 Exam 3

Professor Ilya Kofman

NAME: _____

December 4, 2013

No calculators allowed on this exam.

- **1.** The point P(x, y) is on the unit circle in quadrant II. If $y = \frac{2}{\sqrt{7}}$, find x.
- 2. (a) Draw the terminal point P(t) on the unit circle corresponding to $t = \frac{7\pi}{6}$.
 - (b) The reference angle =
 - (c) $\sin(t) =$ _____
 - (d) $\cos(t) =$ _____
- 3. Determine the trigonometric function for the graph shown below.

- 4. Find the exact value:
 - (a) $\cos(\frac{5\pi}{6}) =$ _____
 - (b) $\sin(\frac{2\pi}{3}) =$ _____
 - (c) $\tan(\frac{3\pi}{4}) =$ _____
 - (d) $\csc(\frac{\pi}{4}) =$ _____
 - (e) $\sec(\frac{11\pi}{6}) =$ _____
 - (f) $\sin(\frac{3\pi}{2}) =$
 - (g) $\cos(-\frac{\pi}{4}) =$ _____
 - (h) $\tan(-\frac{\pi}{3}) =$ _____
 - (i) $\csc(3\pi) =$ _____
 - (j) $\sec(-\frac{2\pi}{3}) =$ _____
- **5.** If $\cos t = \frac{12}{13}$, with terminal point P(t) in quadrant IV, find the exact value:
 - (a) $\sin t =$ _____
 - (b) $\tan t =$ _____
 - (c) $\sec t =$
 - (d) $\csc t =$ _____
 - (e) $\cot t =$ _____

6. Let $y = -4\cos(\frac{1}{2}x)$. Sketch one period. Label the *x*-intercepts, and the max & min values on the *y*-axis.

7. Let $y = 2\sin(3x + \frac{\pi}{2})$. Sketch one period. Label the *x*-intercepts, and the max & min values on the *y*-axis.

8. Let $y = \tan(x - \frac{\pi}{4})$. Sketch one period. Label the *x*-intercepts. (a) period=_____

- **9.** A mass suspended from a spring oscillates in simple harmonic motion at a frequency of 6 cycles per second. The distance between the highest and lowest point of the oscillation is 20 cm. The mass is at its lowest point at time t = 0.
 - (a) Find an equation y = f(t) that describes the displacement of the mass as a function of time.

