NAME: \qquad

1. Evaluate each expression using the graph above.
(a) $(f+g)(1)=$
(b) $(f g)(2)=$ \qquad
(f) Does $f(x)$ have an inverse for all x ? Y \mathbf{N}
(b) $(f g)(2)=$
(g) Does $g(x)$ have an inverse for all x ? $\mathbf{Y} \quad \mathbf{N}$
(c) $(f \circ g)(1)=$ \qquad
(d) $(f \circ g \circ f)(2)=$ \qquad
2. You want to fence off a rectangular garden adjacent to a barn (with no fence along the barn). Also, the garden will be divided in half with a fence perpendicular to the barn. Find the area of the largest garden possible with 180 ft of fencing.

$$
\text { Area }=
$$

\qquad
3. If $f(x)=3 x+8$ and $g(x)=\sqrt{x-5}$, find the following:
(a) $f \circ g$
(b) $g \circ f$
(c) $f \circ f(2)$
4. Find the inverse of $f(x)=\sqrt[3]{4-7 x} . \quad f^{-1}(x)=$ \qquad
5. Find the inverse of $f(x)=\ln (3 x / 5) . \quad f^{-1}(x)=$ \qquad
6. Evaluate the following expressions.
(a) $\log _{6} 72+\log _{6} 3$
(b) $\log _{27} 9$
(c) $\ln \frac{\sqrt[3]{e}}{e^{4}}$
7. Combine into a single logarithm: $\ln (3 x+5)+2 \ln \left(x^{3}-1\right)-\frac{2}{3} \ln (4 x-7)$
8. If $\ln a=-5, \ln b=7, \ln c=-4$, evaluate the following expressions.
(a) $\ln \frac{b^{3}}{a^{2} c^{4}}$
(b) $\ln (b \sqrt[3]{a c})$
(c) $\ln \left(e^{3} / b\right)$
9. Solve the following equations.
(a) $4^{2 x+1}=5^{3 x}$
(b) $\log _{2}(x-2)+\log _{2}(x+1)=2$
(c) $3 \ln (5-x)=2$
10. Suppose $\$ 7,000$ is invested in an account paying 4.5% interest per year (APR).
(a) Find the amount in the account after 10 years if interest is compounded semiannually.
(b) How long will it take for the account to have $\$ 12,000$ if interest is compounded monthly?
(c) Find the amount in the account after 12 years if interest is compounded continuously.
(d) How long will it take for the account to have $\$ 12,000$ if interest is compounded continuously?
11. A culture initially has 2,000 bacteria. After two hours it has 5,000 bacteria.
(a) Find the function that models the population after t hours.
(b) Find the population after 1.5 hours.
(c) When will the population reach 20,000 ?
12. The half-life of carbon- 14 is 5730 years.
(a) If the initial amount is 15 g , find the function that models the amount of carbon-14 after t years.
(b) If the initial amount is 15 g , how much carbon-14 is left after 10,000 years?
(c) If a mummy contains 62% of its original carbon-14 amount, how old is it?

