NAME:

\qquad

1. Evaluate each expression using the graph above.
(a) $(f+g)(3)=$ \qquad (f) Does $f(x)$ have an inverse for all x ? $\mathbf{Y} \quad \mathbf{N}$
(b) $(f g)(1)=$ \qquad (g) Does $g(x)$ have an inverse for all $x ? \mathbf{Y} \quad \mathbf{N}$
(c) $(g \circ f)(4)=$ \qquad
(d) $(f \circ g \circ f)(4)=$ \qquad
2. You want to fence off a rectangular garden adjacent to a barn (with no fence along the barn). Find the area of the largest garden possible with 80 ft of fencing.

$$
\text { Area }=
$$

\qquad
3. If $f(x)=x^{2}-8$ and $g(x)=\sqrt{x+5}$, find the following.
(a) $f \circ g$
(b) $g \circ f$
(c) $g(f(2))$
4. Find the inverse of $f(x)=\sqrt{5-3 x}$.

$$
f^{-1}(x)=
$$

\qquad
5. Find the inverse of $f(x)=\ln (x / 3)$.

$$
f^{-1}(x)=
$$

\qquad
6. Evaluate the following expressions.
(a) $\log _{4} 80-\log _{4} 5$
(b) $\log _{8} 4$
(c) $\ln \frac{e^{3}}{\sqrt{e}}$
7. Combine into a single logarithm: $\ln (5 x)+3 \ln \left(x^{2}+1\right)-\frac{1}{2} \ln (3 x-1)$
8. If $\ln a=4, \ln b=-8, \ln c=6$, evaluate the following expressions.
(a) $\ln \frac{a^{5}}{b^{2} c^{3}}$
(b) $\ln (a \sqrt{b c})$
(c) $\ln (a / e)$
9. Solve the following equations.
(a) $6^{x+2}=4^{5 x}$
(b) $\log _{3}(11+2 x)=4$
(c) $4 \ln (6-x)=3$
10. Suppose $\$ 5,000$ is invested in an account paying 4.5% interest per year (APR).
(a) Find the amount in the account after 6 years if interest is compounded monthly.
(b) How long will it take for the account to have $\$ 8,000$ if interest is compounded semiannually?
(c) Find the amount in the account after 6 years if interest is compounded continuously.
(d) How long will it take for the account to have $\$ 8,000$ if interest is compounded continuously?

