April 30, 2014	Professor Ilya Kofman
NAME:	

- 1. For the five statements below, fill in the chart with **A S N** in each space.
- X1: Two distinct points determine a unique line.
- X2: Two distinct lines intersect in a unique point.
- X3: For a line ℓ and point Q off ℓ , there exists a line parallel to ℓ through Q.
- X4: For a line ℓ and point Q off ℓ , a unique line is parallel to ℓ through Q.
- X5: If two triangles are similar then they are congruent.

	X1	X2	X3	X4	X5
\mathbf{R}^2					
S^2					
$\mathbf{R}P^2$					
\mathbf{H}^2					
Taxicab					

- 2. Given two points A, B in S^2 , precisely describe an <u>orientation-preserving</u> isometry of S^2 that exchanges A and B. Do the same for \mathbf{H}^2 .
- 3. Draw a perspective view of a tiled floor with straightedge alone (at least nine rectangular tiles).