April 30, 2014 Professor Ilya Kofman

NAME: \qquad

1. For the five statements below, fill in the chart with $\mathbf{A} \mathbf{S} \mathbf{N}$ in each space. $X 1$: Two distinct points determine a unique line.
$X 2$: Two distinct lines intersect in a unique point.
$X 3$: For a line ℓ and point Q off ℓ, there exists a line parallel to ℓ through Q.
$X 4$: For a line ℓ and point Q off ℓ, a unique line is parallel to ℓ through Q.
$X 5$: If two triangles are similar then they are congruent.

	$X 1$	$X 2$	$X 3$	$X 4$	$X 5$
\mathbf{R}^{2}					
S^{2}					
$\mathbf{R} P^{2}$					
\mathbf{H}^{2}					
Taxicab					

2. Given two points A, B in S^{2}, precisely describe an orientation-preserving isometry of S^{2} that exchanges A and B. Do the same for \mathbf{H}^{2}.
3. Draw a perspective view of a tiled floor with straightedge alone (at least nine rectangular tiles).
