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Geometrically and diagrammatically maximal knots

Abhijit Champanerkar, Ilya Kofman and Jessica S. Purcell

ABSTRACT

The ratio of volume to crossing number of a hyperbolic knot is known to be bounded above
by the volume of a regular ideal octahedron, and a similar bound is conjectured for the knot
determinant per crossing. We investigate a natural question motivated by these bounds: For
which knots are these ratios nearly maximal? We show that many families of alternating knots
and links simultaneously maximize both ratios.

1. Introduction

Despite many new developments in the fields of hyperbolic geometry, quantum topology,
3-manifolds, and knot theory, there remain notable gaps in our understanding about how
the invariants of knots and links that come from these different areas of mathematics are
related to each other. In particular, significant recent work has focused on understanding how
the hyperbolic volume of knots and links is related to diagrammatic knot invariants (see,
for example, [6, 15]). In this paper, we investigate such relationships between the volume,
determinant, and crossing number for sequences of hyperbolic knots and links.

For any diagram of a hyperbolic link K, an upper bound for the hyperbolic volume vol(K)
was given by D. Thurston by decomposing 52 — K into octahedra, placing one octahedron at
each crossing, and pulling remaining vertices to +co0. Any hyperbolic octahedron has volume
bounded above by the volume of the regular ideal octahedron, vect & 3.66386. So if ¢(K) is the
crossing number of K, then

V;)(I(vaj) < Voct- (1)

This result motivates several natural questions about the quantity vol(K)/c(K'), which we
call the volume density of K. How sharp is the bound of equation (1)? For which links is the
volume density very near voct? In this paper, we address these questions from several different
directions, and present several conjectures motivated by our work.

We also investigate another notion of density for a knot or link. For any non-split link K,
we say that 2mlogdet(K)/c(K) is its determinant density. The following conjectured upper
bound for the determinant density is equivalent to a conjecture of Kenyon for planar graphs
(Conjecture 2.3).

CONJECTURE 1.1. If K is any knot or link,
2w log det(K) ;
C(K) X Voct-

We study volume and determinant density by considering sequences of knots and links.
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Fi1GURE 1. The infinite alternating weave.

DEFINITION 1.2. A sequence of links K, with ¢(K,,) — oo is geometrically maximal if

. vol(K,)
1 7
nvo c(Ky)

= Voct-

Similarly, a sequence of knots or links K, with ¢(K,) — oo is diagrammatically maximal if

27 logdet(K,)
nooe o(Kp) et
In this paper, we find many families of geometrically and diagrammatically maximal
knots and links. Our examples are related to the infinite weave VW, which we define to
be the infinite alternating link with the square grid projection, as shown in Figure 1. We
will see in Section 3 that there is a complete hyperbolic structure on R3 — W obtained
by tessellating the manifold by regular ideal octahedra such that the volume density of
W is exactly voet. Therefore, a natural place to look for geometrically maximal knots
is among those with geometry approaching R3 —W. We will see that links whose dia-
grams converge to the diagram of W in an appropriate sense are both geometrically and
diagrammatically maximal. To state our results, we need to define the convergence of
diagrams.

DEFINITION 1.3. Let G be any possibly infinite graph. For any finite subgraph H, the set
OH is the set of vertices of H that share an edge with a vertex not in H. We let |- | denote
the number of vertices in a graph. An exhaustive nested sequence of connected subgraphs,
{H, C G| H, C Hy1,U,, H, = G}, is a Folner sequence for G if
- |0H| _

lim =0.

The graph G is amenable if a Fglner sequence for G exists. In particular, the infinite square
grid G(W) is amenable.

For any link diagram K, let G(K) denote the projection graph of the diagram. We will
need a particular diagrammatic condition called a cycle of tangles, which is defined carefully
in Definition 4.4. For an example, see Figure 2(a). We now show two strikingly similar ways to
obtain geometrically and diagrammatically maximal links.
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FIGURE 2. (a) A Celtic knot diagram that has a cycle of tangles. (b) A Celtic knot diagram
with no cycle of tangles, which could be in a sequence that satisfies conditions of Theorem 1.4.

THEOREM 1.4. Let K,, be any sequence of hyperbolic alternating link diagrams that contain
no cycle of tangles, such that

(1) there are subgraphs G,, C G(K,,) that form a Fglner sequence for G(W), and
(2) limy,— o0 |Grl/c(Ky) = 1.

Then K,, is geometrically maximal: lim, o (vol(K,)/c(Ky)) = Voct-

THEOREM 1.5. Let K,, be any sequence of alternating link diagrams such that

(1) there are subgraphs G,, C G(K,,) that form a Fglner sequence for G(W), and
(2) limy— oo |Gnl/c(Ky) = 1.

Then K,, is diagrammatically maximal: lim,,_, (27 log det(K,,)/c(Ky)) = Voct-

Ideas for the proof of Theorem 1.4 are due to Agol. His unpublished results were mentioned
in [17], but the geometric argument suggested in [17] for the lower bound is flawed because
it is based on existing volume bounds in [3, 21], and these bounds only imply that for K,
as above, the asymptotic volume density lies in [voct/2, Voct] (see equation (2)). The proof
of geometric maximality, particularly the asymptotically correct lower volume bounds, uses
a combination of two main ideas. First, we use a ‘double guts’ method to show that the
volume of a link with certain diagrammatic properties is bounded below by the volume of a
right-angled polyhedron that is combinatorially equivalent to the Menasco polyhedron of the
link (Theorem 4.13). Secondly, we use the rigidity of circle patterns associated to right-angled
polyhedra to pass from ideal polyhedra with finitely many faces to the complement of W, so
that the Fglner-type conditions above imply that the volume density of K, converges to voct.
Then Theorem 1.4 applies to more general links than those mentioned in [17], including links
obtained by introducing crossings before taking the closure of a finite piece of W, for example,
as shown in Figure 2(b).

Note that any sequence of links satisfying the hypotheses of Theorem 1.4 also satisfies the
hypotheses of Theorem 1.5. This motivates the following questions.

QUESTION 1.6. Is any diagrammatically maximal sequence of knots geometrically maximal,
and vice versa?
vol(Kp,) 27 log det(K,,)
That is, lim ———= =w — lim —————= = voct?
n—oo ¢(K,) o n—oo  c(K,) oct
Both our diagrammatic and geometric arguments below rely on special properties of
alternating links. With present tools, we cannot say much about links that are mostly
alternating.
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FIGURE 3. The closure of this braid is W (5,4).

QUESTION 1.7. Let K, be any sequence of links such that

(1) there are subgraphs G,, C G(K,,) that form a Fglner sequence for G(W),
(2) K, restricted to G,, is alternating, and
(3) limy,— o0 |Gnl/c(K,) = 1.

Is K,, geometrically and diagrammatically maximal?

The following family of knots and links provides an explicit example satisfying the conditions
of Theorems 1.4 and 1.5. A weaving knot W (p, q) is the alternating knot or link with the same
projection as the standard p-braid (o1 ---op—1)? projection of the torus knot or link T'(p, q).
Thus, ¢(W(p,q)) = q(p — 1). For example, W (5,4) is the closure of the 5-braid in Figure 3.

Theorems 1.4 and 1.5 imply that any sequence of knots W(p,q), with p,q — oo, is both
geometrically and diagrammatically maximal. In [9], we provide asymptotically sharp, explicit
bounds on volumes in terms of p and ¢ alone. Moreover, applying these asymptotically sharp
bounds, we prove in [9] that as p,q — oo, S — W (p,q) approaches R?® — W as a geometric
limit. Proving that a class of knots or links approaches R? — W as a geometric limit seems to
be difficult in general. It is unknown, for example, whether all the links of Theorem 1.4 approach
R3? — W as a geometric limit, and the proof of that theorem does not give this information.

1.1. Spectra for volume and determinant density

We describe a more general context for Theorems 1.4 and 1.5.

DEFINITION 1.8. Let Cyo = {vol(K)/c(K)} and Cqet = {27 logdet(K)/c(K)} be the sets
of respective densities for all hyperbolic links K. We define Spec,,; = C.,, and Specge; = Cloy
as their derived sets (set of all limit points).

The upper bound in (1) was subsequently improved in [1] for any hyperbolic link K with
¢(K) = 5. Combining the lower bound in [3, 21] and the upper bound in [1], we get the best
current volume bounds for a knot or link K with a prime alternating twist-reduced diagram
with no bigons and ¢(K) > 5 crossings:

”‘;t (e(K) — 2) < vOl(K) < voes (¢(K) — 5) + dvger. (2)

Here vier =~ 1.01494 is the volume of a regular ideal tetrahedron.
The upper bound in (2) shows that the volume density of any link is strictly less than vect.
Together with Conjecture 1.1, this implies:

Specyol,  SpecCyer C [0, Voct)-

For infinite sequences of alternating links without bigons, equation (2) implies that Spec,,
restricted to such links lies in [voet /2, Voet]-

Twisting on two strands of an alternating link gives 0 as a limit point of both densities.
Thus, we obtain the following corollary of Theorems 1.4 and 1.5.
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COROLLARY 1.9. The values 0 and v, are contained in Spec,, N Specqq-

Although v,¢t does not occur as a volume density of any finite link, voc; is the volume
density of W (see Remark 3.2). Corollary 3.7 of [9] also shows that 2vie € Spec,,;. It is an
interesting problem to understand the sets Spec,,, Specge, and Spec,, N Specy., and to
explicitly describe and relate their elements.

In fact, since a preprint of this paper was posted, Burton [5] and Adams et al. [2] proved that
Spec o = [0, Voct] and [0, voet] C Specye, hence Spec,; N Specye, = [0, Voct]. Adams et al. [2]
also showed that for any x € [0, voct], there exists a sequence of knots K, with = as a common
limit point of both the volume and determinant densities of K.

1.2. Knot determinant and hyperbolic volume

There is strong experimental evidence in support of a conjectured relationship between the
hyperbolic volume and the determinant of a knot, which was first observed in Dunfield’s
prescient online post [12]. A quick experimental snapshot can be obtained from SnapPy [11]
or Knotscape [19], which provide this data for all knots with at most sixteen crossings. The
top nine knots in this census sorted by maximum volume and by maximum determinant agree,
but only set-wise! More data and a broader context is provided by Friedl and Jackson [14],
and Stoimenow [29]. In particular, Stoimenow [29] proved there are constants Cy, Cy > 0, such
that for any hyperbolic alternating link K,

Cl C(K) C> VOI(K)
2-1.0355"15) L det(K) < | ——
() <\ Sarm)

Experimentally, we discovered the following surprisingly simple relationship between the two
quantities that arise in the volume and determinant densities. We have verified the following
conjecture for all alternating knots up to 16 crossings, and weaving knots and links for 3 < p <
50 and 2 < ¢ < 50.

CONJECTURE 1.10 (Vol-Det Conjecture). For any alternating hyperbolic link K,
vol(K) < 2mlog det(K).
Conjectures 1.10 and 1.1 would imply one direction of Question 1.6, that any geometrically
maximal sequence of knots is diagrammatically maximal. In contrast, we can obtain K, by

twisting on two strands, such that vol(K,,) is bounded, but det(K,) — oo.
Our main results imply that the constant 27 in Conjecture 1.10 is sharp:

COROLLARY 1.11. If a < 27, then there exist alternating hyperbolic knots K such that
alogdet(K) < vol(K).

Proof. Let K, be a sequence of knots that is both geometrically and diagrammatically max-

imal. Then lim,,_,o(alogdet(K,,)/c(Kp)) = QUoct /2T < Voet and limy, o (vol(K,)/c(K,)) =
O

Voet- Hence, for n sufficiently large, alogdet(K,,) < vol(K,,).

Our focus on geometrically and diagrammatically maximal knots and links naturally
emphasizes the importance of alternating links. Every non-alternating link can be viewed as
a modification of a diagram of an alternating link with the same projection, by changing
crossings. This modification affects the determinant as follows.
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PROPOSITION 1.12. Let K be a reduced alternating link diagram, and let K' be obtained
by changing any proper subset of crossings of K. Then

det(K') < det(K).

What happens to volume under this modification? Motivated by Proposition 1.12, the first
two authors previously conjectured that alternating diagrams also maximize hyperbolic volume
in a given projection. They have verified part (a) of the following conjecture for all alternating
knots up to 18 crossings (approximately 10.7 million knots).

CONJECTURE 1.13. (a) Let K be an alternating hyperbolic knot, and let K’ be obtained
by changing any crossing of K. Then

vol(K') < vol(K).

(b) The same result holds if K’ is obtained by changing any proper subset of crossings
of K.

Note that by Thurston’s Dehn surgery theorem, the volume converges from below when
twisting two strands of a knot, so vol(K) — vol(K”) can be an arbitrarily small positive number.

A natural extension of Conjecture 1.10 to any hyperbolic knot is to replace the determinant
with the rank of the reduced Khovanov homology H**(K). Let K be an alternating hyperbolic
knot, and let K’ be obtained by changing any proper subset of crossings of K. It follows from
results in [7] that

det(K') < rank(H**(K')) < det(K).

Conjectures 1.10 and 1.13 would imply that vol(K’) < 27 logdet(K), but using data from
KhoHo [28] we have verified the following stronger conjecture for all non-alternating knots
with up to 15 crossings.

CONJECTURE 1.14. For any hyperbolic knot K,
vol(K) < 27 log rank(H**(K)).

Note that Conjecture 1.10 is a special case of Conjecture 1.14.

1.3. Organization

In Section 2, we give the proof of Theorem 1.5. We discuss the geometry of the infinite weave
W in Section 3. In Section 4, we begin the proof of Theorem 1.4 by proving that these links
have volumes bounded below by the volumes of certain right-angled hyperbolic polyhedra.
In Section 5, we complete the proof of Theorem 1.4, essentially using the rigidity of circle
patterns associated to the right-angled polyhedra. We will assume throughout that our links
are non-split.

2. Diagrammatically maximal knots and spanning trees

In this section, we first give the proof of Theorem 1.5, then discuss conjectures related to
Conjecture 1.1.

For any connected link diagram K, we can associate a connected graph G, called the Tait
graph of K, by checkerboard coloring complementary regions of K, assigning a vertex to every
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shaded region, an edge to every crossing and a + sign to every edge as follows:

N\ . V .

- -

M A

Thus, e(Gk) = ¢(K), and the signs on the edges are all equal if and only if K is alternating.
So any alternating knot or link K is determined up to mirror image by its unsigned Tait graph
Gk.

Let 7(Gk) denote the number of spanning trees of Gg. For any alternating link, 7(Gg) =
det(K), the determinant of K. More generally, for links including non-alternating links, we
have the following lemma.

LEMMA 2.1 ([8]). For any spanning tree T of Gk, let o(T') be the number of positive edges
inT. Let s,(K) = #{spanning trees T of Gk |o(T) = o}. Then

det(K) =

S (-1 sa<K>‘ .

o

With this notation, we can prove Proposition 1.12 from the introduction.

PROPOSITION (Proposition 1.12). Let K be a reduced alternating link diagram, and K’ be
obtained by changing any proper subset of crossings of K. Then

det(K') < det(K).

Proof. First, suppose only one crossing of K is switched, and let e be the corresponding
edge of Gk, which is the only negative edge in Gg-. Since K has no nugatory crossings, e is
neither a bridge nor a loop. Hence, there exist spanning trees 7} and 75 such that e € T} and
e ¢ Ty. The result now follows by Lemma 2.1.

When a proper subset of crossings of K is switched, by Lemma 2.1 it suffices to show that if
$¢(K) # 0, then sy41(K) # 0 or sy—1(K) # 0. Since there are no bridges or loops, every pair
of edges is contained in a cycle. So for any spanning tree T7 with o(77) < e(7T1), we can find a
pair of edges e; and ey with opposite signs, such that e; € cyc(71, e2), where recall cyc(T1, ea)
is the set of edges in the unique cycle of 77 Ues. It follows that T = (T} — e1) U eq satisfies
U(Tg) :O'(Tl):tl |

We now show how Theorem 1.5 follows from previously known results about the asymptotic
enumeration of spanning trees of finite planar graphs.

THEOREM 2.2. Let H, be any Falner sequence for the square grid, and let K, be any
sequence of alternating links with corresponding Tait graphs G, C H,, such that
lim #{r € V(Gn) : deg(z) =4} 1

n—o0 |Hn| ’

where V (G,,) is the set of vertices of G,,. Then

lim 2w log det(K,,)
n— oo C(Kn)

= Voct-
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Proof. Burton and Pemantle (1993), Shrock and Wu (2000), and others [34] and [35]
computed the spanning tree entropy of graphs H,, that approach G(W):

. logT(Hp,)
i \H,,|

=4C/m,

where C & 0.9160 is Catalan’s constant. The spanning tree entropy of G,, is the same as for
graphs H,, that approach G(W) by [22, Corollary 3.8]. Since 4C = v, and by the two-to-one
correspondence for edges to vertices of the square grid, the result follows. ]

Note that the subgraphs G, in Theorem 2.2 have small boundary (made precise in [22]), but
they need not be nested, and need not exhaust the infinite square grid G(W). Because the Tait
graph Gyy is isomorphic to G(W), these results about the spanning tree entropy of Tait graphs
G are the same as for projection graphs G(K) used in Theorem 1.5. Thus, Theorem 2.2
implies Theorem 1.5. This concludes the proof of Theorem 1.5.

2.1. Determinant density
We now return our attention to Conjecture 1.1 from the introduction. That conjecture is

equivalent to the following conjecture due to Kenyon.

CONJECTURE 2.3 (Kenyon [20]). If G is any finite planar graph,
log 7(G)
e(G)

where C =~ 0.9160 is Catalan’s constant.

< 20/ ~ 0.58312,

The equivalence can be seen as follows. Since 4C = vyt and 7(Gx) = det(K), Conjecture 2.3
would immediately imply that Conjecture 1.1 holds for all alternating links K. If K is
not alternating, then there exists an alternating link with the same crossing number and
strictly greater determinant by Proposition 1.12. Therefore, Conjecture 2.3 would still imply
Conjecture 1.1 in the non-alternating case.

On the other hand, any finite planar graph is realized as the Tait graph of an alternating
link, with edges corresponding to crossings. Hence Conjecture 1.1 implies Conjecture 2.3.

Currently, the best proved upper bound for the determinant density is due to Stoimenow
[30]. Let 6 ~ 1.8393 be the real positive root of 23 — 22 —z — 1 = 0. Then [30, Theorem 2.1]
implies that 27 log det(K)/c(K) < 2mlog(d) ~ 3.8288. We thank Jun Ge for informing us of this
result. Note that planarity is required to prove Conjecture 1.1 because Kenyon has informed
us that 27 log 7(G)/e(G) > voer does occur for some non-planar graphs.

3. Geometry of the infinite weave

In this section, we discuss the geometry and topology of the infinite weave W and its
complement R? — W. Recall that W is the infinite alternating link whose diagram projects
to the square grid, as shown in Figure 1.

THEOREM 3.1. The manifold R? — W has a complete hyperbolic structure with a funda-
mental domain tessellated by regular ideal octahedra, one for each square of the infinite square
grid.

Proof. First, we view R® as R? x (—1,1), with the plane of projection for W the plane
R? x {0}. Thus, W lies in a small neighborhood of R? x {0} in R? x (—1,1). We can arrange
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FIGURE 4 (colour online). (a) The Z x Z quotient of R® — W is a link complement in a thickened
torus. (b) This is also the complement of link L in S®. (c) Cutting along checkerboard surfaces,
viewed from above the projection plane.

the diagram so that R3 — W is biperiodic and equivariant under a Z x Z action given by
translations along the z- and y-axes, translating by two squares in each direction to match
the alternating property of the diagram. Note that the quotient gives an alternating link in
the thickened torus, with fundamental region as shown in Figure 4(a). A thickened torus, in
turn, is homeomorphic to the complement of the Hopf link in S3. Thus the quotient of R? — W
under the Z x Z action is the complement of a link L in S3, as shown in Figure 4(b).

The link complement S® — L can be easily shown to be obtained by gluing four regular ideal
octahedra, for example by computer using Snap [10] (which uses exact arithmetic). Below, we
present an explicit geometric way to obtain this decomposition.

Consider the two surfaces of S® — L on the projection plane of the thickened torus, that
is, the image of R? x {0}. These can be checkerboard colored on T2 x {0}. These intersect in
four crossing arcs, running between crossings of the single square shown in the fundamental
domain of Figure 4. Generalizing the usual polyhedral decomposition of alternating links, due
to Menasco [24] (see also [21]), cut along these checkerboard surfaces. When we cut, the
manifold falls into two pieces X; and X», each homeomorphic to T2 x I, with one boundary
component T2 x {1}, say, coming from a Hopf link component in S3, and the other now given
faces, ideal edges, and ideal vertices from the checkerboard surfaces, as follows.

(1) For each piece X; and X, there are four faces total, two red and two blue, all
quadrilaterals coming from the checkerboard surfaces.

(2) There are four equivalence classes of edges, each corresponding to a crossing arc.

(3) Ideal vertices come from remnants of the link in 72 x {0}: either overcrossings in the
piece above the projection plane, or undercrossings in the piece below.

The faces (red and blue), edges (crossing arcs), and ideal vertices (link diagram strands) for
X1 above the projection plane are shown in Figure 4(c).

Now, for each ideal vertex on T2 x {0} of X;, i = 1,2, add an edge running vertically from
that vertex to the boundary component T2 x {1}. Add triangular faces where two of these
new edges together bound an ideal triangle with one of the ideal edges on T2 x {1}. These
new edges and triangular faces cut each X; into four square pyramids. Since X; and X, are
glued across the squares at the base of these pyramids, this gives a decomposition of S% — L
into four ideal octahedra, one for each square region in 72 x {0}.

Give each octahedron the hyperbolic structure of a hyperbolic regular ideal octahedron.
Note that each edge meets exactly four octahedra, and so the monodromy map about each
edge is the identity. Moreover, each cusp is tiled by Euclidean squares, and inherits a Euclidean
structure in a horospherical cross-section. Thus by the Poincaré polyhedron theorem (see, for
example, [13]), this gives a complete hyperbolic structure on S® — L.

Thus the universal cover of S® — L is H?, tiled by regular ideal octahedra, with a
square through the center of each octahedron projecting to a square from the checkerboard
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(a) (b)

N ]

FIGURE 5 (colour online). (a) Circle pattern for hyperbolic planes of the top piece X1 of
R —W. (b) Hyperbolic planes bounding one top square pyramid.

o

FIGURE 6 (colour online). A regular ideal hyperbolic octahedron is obtained by gluing the two
square pyramids. Hyperbolic planes that form the bottom square pyramid and the associated
circle pattern are shown.

decomposition. Taking the cover of S® — L corresponding to the Z x Z subgroup associated
with the Hopf link, we obtain a complete hyperbolic structure on R* — W, with a fundamental
domain tessellated by regular ideal octahedra, with one octahedron for each square of the
square grid, as claimed. O

The proof of Theorem 3.1 also provides the face pairings for the regular ideal octahedra that
tessellate the fundamental domain for R? — . We also discuss the associated circle patterns
on T? x {0}, which in the end play an important role in the proof of Theorem 1.4 in Section 5.

A regular ideal octahedron is obtained by gluing two square pyramids, which we will call the
top and bottom pyramids. In Figure 5(b), the apex of the top square pyramid is at infinity,
the triangular faces are shown in the vertical planes, and the square face is on the hemisphere.

From the proof above, R? — W is cut into X, and X’g, such that X, is obtained by gluing
top pyramids along triangular faces, and X, by gluing bottom pyramids along triangular faces.
The circle pattern in Figure 5(a) shows how the square pyramids in X, are viewed from infinity
on the xy-plane.

Similarly, in Figure 6, we show the hyperbolic planes that form the bottom square pyramid,
and the associated circle pattern. In this figure, the apex of the bottom square pyramid is in
the center, the triangular faces are on hemispherical planes, and the square face is on the upper
hemisphere. The circle pattern shows how the bottom square pyramids on the xy-plane are
viewed from infinity on the zy-plane.

A fundamental domain Py, for R® — W in H? is explicitly obtained by attaching each top
pyramid of X; to a bottom pyramid of X, along their common square face. Hence, Py is
tessellated by regular ideal octahedra. By the proof above, an appropriate 7/2 rotation is
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i

FIGURE 7 (colour online). Face pairings for a fundamental domain Py, of R® —W. The shaded
part indicates the fundamental domain of S — L.

needed when gluing the square faces, which determines how adjacent triangular faces are
glued to obtain Pyy. Figure 7 shows the face pairings for the triangular faces of the bottom
square pyramids, and the associated circle pattern. The face pairings are equivariant under
the translations (x,y) — (z £ 1,y £ 1). That is, when a pair of faces is identified, then the
corresponding pair of faces under this translation is also identified.

REMARK 3.2. Because every regular ideal octahedron corresponds to a square face that
meets four crossings, and any crossing meets four square faces that correspond to four ideal
octahedra, it follows that the volume density of the infinite link W is exactly voct.

4. Guts and lower volume bounds

In this section, we begin the proof of Theorem 1.4 by showing that knots satisfying the
hypotheses of that theorem have volume bounded below by the volume of a certain right-angled
polyhedron. The main result of this section is Theorem 4.13.

The techniques we use to bound volume from below involve guts of embedded essential
surfaces, which we define below. Since we will be dealing with orientable as well as non-
orientable surfaces, we say that any surface is essential if and only if the boundary of a regular
neighborhood of the surface is an essential (orientable) surface, that is, it is incompressible and
boundary incompressible.
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If N is a 3-manifold admitting an embedded essential surface ¥, then N\\X denotes the
manifold with boundary obtained by removing a regular open neighborhood of ¥ from N. Let
Y. denote the boundary of N\\X, which is homeomorphic to the unit normal bundle of ¥.
Note that if IV is an open manifold, that is, N has non-empty topological frontier consisting of
rank-2 cusps, then ¥ will be a strict subset of the topological frontier of N'\\3, which consists
of ¥ and a collection of tori and annuli coming from cusps of N.

DEFINITION 4.1. The parabolic locus of N\\X consists of tori and annuli on the topological
frontier of N\\X which come from cusps of N.

We let D(N\\X) denote the double of the manifold N\\, doubled along the boundary 3.
The manifold D(N\\X) admits a JSJ decomposition. That is, it can be decomposed along
essential annuli and tori into Seifert fibered and hyperbolic pieces. This gives an annulus
decomposition of N\\X: a collection of annuli in N\\X, disjoint from the parabolic locus,
that cut N\\X into I-bundles, Seifert fibered solid tori, and guts. Let guts(N\\X) denote
the guts, which is the portion that admits a hyperbolic metric with geodesic boundary.
Let D(guts(N\\X)) denote the complete hyperbolic 3-manifold obtained by doubling the
guts(N\\X) along the part of boundary contained in ¥ (that is, disjoint from the parabolic
locus of N\\X).

THEOREM 4.2 (Agol-Storm-Thurston [3]). Let N be a finite volume hyperbolic manifold,
and ¥ an embedded m1-injective surface in N. Then

Vol(N) > v | DIN\) | = 3vol(D(guts(N\\2))). 3)

Here the value || - || denotes the Gromov norm of the manifold.

We will prove Theorem 1.4 in a sequence of lemmas that concern the geometry and
topology of alternating links, and particularly ideal checkerboard polyhedra that make up
the complements of these alternating links. These ideal polyhedra were described by Menasco
[24] (see also [21]). We review them briefly.

DEFINITION 4.3. Let K be a hyperbolic alternating link with an alternating diagram (also
denoted K) that is checkerboard colored. Let B (blue) and R (red) denote the checkerboard
surfaces of K. If we cut S — K along both B and R, then the manifold decomposes into two
identical ideal polyhedra, denoted by P; and P,. We call these the checkerboard ideal polyhedra
of K. They have the following properties.

(1) For each P;, the ideal vertices and edges form a 4-valent graph on dP;, and that graph
is isomorphic to the projection graph of K on the projection plane.

(2) The faces of P; are colored blue and red corresponding to the checkerboard coloring of
K.

(3) To obtain S® — K from P; and P, glue each red face of P; to the same red face of P,
and glue each blue face of P; to the same blue face of Ps.

The gluing maps in item (3) are not the identity maps, but rather involve a single clockwise or
counterclockwise ‘twist’ (see [24] for details). In this paper, we do not need the precise gluing
maps, just which faces are attached.

The checkerboard surfaces B and R are well known to be essential in the alternating link
complement [25]. We will cut along these surfaces, and investigate the manifolds (5% — K)\\B
and (S® — K)\\R. Note that because K C B, there is a homeomorphism (S3 — K)\\B &
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FIGURE 8. A visible Conway sphere.

S$3\\ B, with parabolic locus mapping to identical parabolic locus. We will simplify notation
by writing S3\\B.

We will need to work with diagrams without Conway spheres. Menasco [23] and Thistle-
thwaite [31, 32] showed that for a prime alternating link diagram, essential Conway spheres
can appear in very limited ways. We also consider inessential 4-punctured spheres, for example
bounding rational tangles. Following Thistlethwaite’s notation, we say that a 4-punctured
sphere is visible if it is parallel to one dividing the diagram into two tangles, as shown in
Figure 8. In [32, Proposition 5.1], it was shown that if there is an essential visible Conway
sphere, then it is always visible in any prime alternating diagram of the same link.

DEFINITION 4.4. We call a 2-tangle knotty if it is non-trivial, and not a (portion of a)
single twist region; that is, not a rational tangle of type n or 1/n for n € Z. We will say that
K, contains a cycle of tangles if K,, contains a visible Conway sphere with a knotty tangle on
each side.

For any link that contains a cycle of tangles, one of its two Tait graphs has a 2-vertex cut
set coming from the regions on either side of a tangle. On the other hand, the Tait graphs of
W are both the square grid, which is 4-connected. So W has no cycle of tangles.

Recall that a diagram is prime if any simple closed curve meeting the diagram exactly twice,
transversely in the interiors of edges, contains no crossings on one side. A diagram is twist-
reduced if any simple closed curve meeting the diagram exactly twice in crossings, running
directly through the crossing to the region on the opposite side, bounds a (possibly empty)
string of bigon regions of the diagram on one side.

LEMMA 4.5. Let K be a link diagram that is prime, alternating, and twist-reduced with
no cycle of tangles, with red and blue checkerboard surfaces. Obtain a new link diagram Kg
(respectively, Kg) by removing red (respectively, blue) bigons from the diagram of K and
replacing adjacent red (respectively, blue) bigons in a twist region with a single crossing in the
same direction. Then the resulting diagram Kp (respectively, Kg) is prime, alternating, and
twist-reduced with no cycle of tangles.

Proof. Because twist regions bounding red bigons are replaced by a single crossing in the
same direction, the diagram of K remains alternating. If it is not prime, then there would be
a simple closed curve v meeting the diagram transversely twice in two edges, with crossings
on either side. Because the closed curve v does not meet crossings, we may re-insert the red
bigons into a small neighborhood of the crossings of Kz without meeting . Then ~ gives a
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simple closed curve in the diagram of K meeting the diagram twice with crossings on either
side, contradicting the fact that K is prime.

Next suppose the diagram of K contains a cycle of tangles. The corresponding visible
Conway sphere must avoid crossings of K g, so we may re-insert red bigons into a neighborhood
of crossings of the diagram, avoiding boundaries of tangles, and we obtain a visible Conway
sphere in K. Because K contains no cycle of tangles, one of the resulting tangles must be
trivial, or a single twist region. If the tangle is trivial in K, then it is trivial in K. But if a
tangle is a part of a twist region in K, then it is either a part of a twist region in Kg, or a
single crossing, depending on whether the bigons in the twist region are blue or red. In either
case, the Conway sphere bounds a knotty tangle in K, which is not allowed by Definition 4.4.

Finally, suppose that Kg is not twist-reduced. Then there exists a simple closed curve +/
meeting the diagram in exactly two crossings x and y, with 4/ running through opposite sides
of the two crossings, such that neither side of v/ bounds a string of bigons in a twist region.
Perturb +/ slightly so that it contains = on one side, and y on the other. Then ~' defines two
non-trivial tangles, one on either side of 4/, neither of which can be knotty. This contradicts
the fact shown in the previous paragraph, namely that K is not a cycle of tangles. O

COROLLARY 4.6. For K as in Lemma 4.5, let Kgr be obtained by replacing any twist
region in the diagram of K by a single crossing (removing both red and blue bigons). Then the
diagram of Kpggr will be prime, alternating, and twist-reduced with no cycle of tangles.

Proof. Replace K in the statement of Lemma 4.5 with K and apply the lemma to the
blue bigons of Kp. ]

Given a twist region in the diagram of a knot or link, recall that a crossing circle at that
twist region is a simple closed curve in the diagram, bounding a disk in $2 that is punctured
exactly twice by the diagram, by strands of the link running through that twist region.

LEmMMA 4.7. Let K be a hyperbolic link with a prime, alternating, twist-reduced diagram
(also called K) with no cycle of tangles. Let B denote the blue checkerboard surface of K.
Let Kgr be the link with diagram obtained from that of K by replacing adjacent red bigons
by a single crossing, and let Br be the blue checkerboard surface for K. Then there exists a
collection of twist regions bounding blue bigons in K g, and Seifert fibered solid tori E, with the
core of each solid torus in F isotopic to a crossing circle encircling one of these twist regions,
such that

guts(S*\\B) = guts(5*\\Bg) = (S*\\Bg) — E,
and
vol(§* = K) > Lut [D(S*\\Br)| = 2vol(D((S*\\Br) — E)).

Proof. By Theorem 4.2,
vol(S? — K) > 5uret|| D(SP\\B)|| = 5vol(D(guts(S°\\B))),

so the claim about volumes follows from the claim about guts.

Lackenby notes that for a prime, twist-reduced alternating diagram K, guts((S® — K)\\B) is
equal to guts((S® — Kr)\\Bgr) (see [21, Section 5]). By [21, Theorem 13], x(guts(S*\\Bgr)) =
X(S3\\Br), where x(-) denotes Euler characteristic. In fact, in the proof of that theorem,
Lackenby shows that a bounding annulus of the characteristic submanifold is either boundary
parallel, or separates off a Seifert fibered solid torus. We review the important features of that
proof to determine the form of the Seifert fibered solid tori in the collection E required by this
lemma.
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FIGURE 9 (colour online). Left: A cycle of three fused units. Right: All but one of the tangles
are trivial.

In the case that there is a Seifert fibered solid torus, its boundary is made up of at least
one annulus on Bg and at least one essential annulus A in S®\\Bg. The essential annulus
A is either parabolically compressible or parabolically incompressible, as defined in [21] (see
also [15, Definition 4.5]). If it is parabolically compressible, then it decomposes into essential
product disks. Lackenby proves in [21, Theorem 14] that there are no essential product disks.
But if A is parabolically incompressible, then following the proof of [21, Theorem 14] carefully,
we see that such a Seifert fibered solid torus determines a cycle of fused units, as shown in
Figure 9 (left), which is a reproduction of Figure 14 of [21], with three fused units shown. More
generally, there must be at least two fused units; otherwise, we have a Md&bius band and not
an essential annulus by the proof of [16, Lemma 4.1].

The ellipses in dotted lines in Figure 9 represent the boundaries of normal squares that form
the essential annulus. Each of these encircles a fused unit, which is made up of two crossings and
a (possibly trivial) tangle, represented by a circle in the figure. The Seifert fibered solid torus
is made up of two copies of such a figure, one in each polyhedron, and consists of the region
exterior to the ellipses. That is, it meets the blue surface in strips between dotted ellipses, and
meets the red surface in a disk in the center of the diagram, and one outside the diagram. This
gives a ball, with fibering of an I-bundle, with each interval of I parallel to the blue strips and
with its endpoints on the red disks. The two balls are attached by gluing red faces, giving a
Seifert fibered solid torus whose core runs through the center of the two red disks.

Now, we want to show that such a Seifert fibered solid torus only arises in a twist region
of blue bigons. Consider a single cycle of fused units. Note that if any one of the tangles in
that fused unit is non-trivial, then the boundary of the fused unit is a visible Conway sphere
bounding at least one knotty tangle. If more than one of the fused units in the cycle have
this property, then by grouping other tangles in the cycle of fused units into these non-trivial
tangles, we find that our diagram contains a cycle of tangles, contrary to assumption.

So at most one of the fused units in the cycle can have a non-trivial tangle. If both tangles
in a fused unit are non-trivial, then by joining one non-trivial tangle to all other tangles in the
cycle of fused units, we obtain again a cycle of tangles, contrary to assumption.

So at most one of the tangles in the cycle of fused units is non-trivial. If all the tangles
are trivial, then the diagram is that of a (2, ¢)-torus link, contradicting the fact that it is
hyperbolic. Hence exactly one of the tangles is non-trivial. This is shown in Figure 9 (right).
Note in this case, the cycle of fused units is simply a twist region of the diagram bounding blue
bigons. Note also that the Seifert fibered solid torus has the form claimed in the statement of
the lemma.

Then guts(S3\\Bgr) = (S*\\Bgr) — E. O

To simplify notation, let Mp = D(S?\\B) and let Mr = D(S3\\R).
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898 A. CHAMPANERKAR, I. KOFMAN AND J. S. PURCELL

LEMMA 4.8. Let K be a link with a prime, alternating diagram with checkerboard surfaces
B and R. Then the manifold Mp contains an embedded essential surface DR obtained by
doubling R.

Proof. Note that Mp has an ideal polyhedral decomposition coming from the checkerboard
ideal polyhedra of Definition 4.3. That is, S® — K is obtained from two polyhedra P; and P,
with red and blue faces glued. The manifold S*\\ B is obtained by cutting along blue faces, or
removing the gluing maps on blue faces of P;.

Then the double, Mg, is obtained by taking two copies, P} and P?, of P;, gluing red faces
of P{ to red faces of P§ by a twist, and gluing blue faces of le to those of sz by the identity.
Note that DR consists of all red faces of the four polyhedra.

Now, suppose that DR is not essential. Suppose first that the boundary of a regular
neighborhood of DR, call it DR, is compressible. Let I’ be a compressing disk for DR. Then
OF lies on DR, but the interior of I is disjoint from a regular neighborhood of DR. Make F’
transverse to the faces of the P}. Note now that F must intersect B, else F' lies completely
in one of the P/, hence F can be mapped into S® — K to give a compression disk for R in
83 — K. This is impossible since R is incompressible in S° — K.

Now consider the intersections of B with F'. We may assume there are no simple closed curves
of intersection, or an innermost such curve would bound a compressing disk for B, which we
can isotope off using the fact that B is essential. Thus B N F consists of arcs running from 0F
to OF.

An outermost arc of BN F cuts off a subdisk F’ of F', whose boundary consists of an arc
on OF C DR and an arc on B. The boundary F’ gives a closed curve on the checkerboard
colored polyhedron which meets exactly two edges and two faces. Using the correspondence
between the boundary of the polyhedron and the diagram of the link, item (1) of Definition 4.3,
it follows that OF” gives a closed curve on the diagram of K that intersects the diagram exactly
twice. Because the diagram of K is prime, there can be crossings on only one side of F’. Thus
the arc of OF’ on B must have its endpoints on the same ideal edge of the polyhedron, and we
may isotope it off, reducing the number of intersections |F' N B|. Continuing in this manner,
we reduce to the case F'N B = (), which is a contradiction.

The proof that DR is boundary incompressible follows a similar idea. Suppose as above
that F is a boundary compressing disk for DR. Then OF consists of an arc a on a
neighborhood N(K) of K, and an arc § on DR. As before, F must intersect B or it gives
a boundary compression disk for R in S® — K. As before, F' cannot intersect B in closed
curves, and primality of the diagram of K again implies F' cannot intersect B in arcs that
cut off subdisks of F' with boundary disjoint from N(K). Hence all arcs of intersection
F N B have one endpoint on o = JF N N(K) and one endpoint on 8= 9F N DR. Again
there must be an outermost such arc, cutting off a disk F’ C F embedded in a single
ideal polyhedron, with OF’ consisting of three arcs, one on R, one on B, and one on
an ideal vertex of the polyhedron (coming from N(K)). But then OF’ must run through
a vertex and an adjacent edge, hence it can be isotoped off, reducing the number of
intersections of F' and B. Repeating a finite number of times, again B N F = (), which is a
contradiction. |

LEMMA 4.9. Let Kg be a link with a prime, twist-reduced diagram with no red bigons and
no cycle of tangles, with checkerboard surfaces Br and Rpr, and let E be the Seifert fibered
solid tori from Lemma 4.7. Denote the double of the red surface in D((S*\\Br) — E) by DRg.
Then DR is essential in D((S3\\Bgr) — E).
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Proof.  Recall that to prove this, we need to show that the boundary of a regular
neighborhood of DRpg, call it DRp, is incompressible and boundary incompressible in
D((S*\\Br) — E). o

By the previous lemma, we know DR C D(S®\\Bg) is incompressible. We will use the fact
that D((S®\\Br) — E) is an embedded submanifold of D(S3\\Bg), with DR C DRp, and
that the cores of the Seifert fibered solid tori in E are all isotopic to crossing circles for the
diagram, encircling blue bigons, by Lemma 4.7. Such a crossing circle intersects the polyhedra
in the decomposition of D(S*\\Bg) in arcs with endpoints on distinct red faces.

Now, suppose there exists a compressing disk ® for DRg. Then ® C D((S*\\Bgr) — E) C
D(S3\\Br), which has a decomposition into ideal polyhedra coming from S® — K, and so we
may isotope P, keeping it disjoint from E, so that it meets faces and edges of the polyhedra
transversely. The boundary of ® lies entirely on DRpg, which we may isotope to lie entirely
on the red faces of the polyhedra. As in the proof of the previous lemma, we consider how ®
intersects blue faces.

Suppose first that ¢ does not meet any blue faces. Then 9% must lie in a single red face.
But then it bounds a disk in that red face. If it does not bound a disk in DRp, then that
disk must meet E. Then the disk meets the core of a component of F, which is a portion of
a crossing circle in the polyhedron. However, since ® N E is empty, the entire portion of the
crossing circle in the polyhedron must lie within 0®, and thus have both its endpoints in the
polyhedron within the disk bounded by d®. This is a contradiction: any crossing circle meets
two distinct red faces.

So suppose ® meets a blue face. Then just as above, an outermost arc of intersection on ®
defines a curve on the diagram of S® — K meeting the knot exactly twice. It must bound no
crossings on one side, by primality of K. Then the curve bounds a disk on the polyhedron,
and a disk on ®, so either we may use these disks to isotope away the intersection with the
blue face, or the disk in the polyhedron meets E. But again, this implies that a portion of
crossing circle lies between ® and this disk on the polyhedron. Again, since the crossing circle
has endpoints in distinct red faces, this is impossible without intersecting ®. This proves that
DRp is incompressible.

The proof of boundary incompressibility is very similar. If there is a boundary compressing
disk ®, then O® consists of an arc 3 on the boundary of D((S3\\Bg) — E) and an arc o on
red faces of the polyhedra. A similar argument to that above implies that « cannot lie in a
single red face: since ¢ does not meet crossing circles at the cores of £/, ¢ would bound a disk
on DREg. So « intersects a blue face of the polyhedron. Then consider an outermost blue arc
of intersection. As above, it cannot cut off a disk with boundary consisting of exactly one red
arc and one blue arc. So it cuts off a disk ® on ® with boundary a red arc o/, an arc 5’ on
the boundary of D((S®\\Bgr) — E), and a blue arc +’. This bounds a disk on the boundary of
the polyhedron. The interior of the disk cannot intersect F, else ® would intersect a crossing
circle. Hence we may use this disk to isotope away this intersection. Thus DRpg is boundary
incompressible, and the lemma holds. ]

LEMMA 4.10. Let K be a hyperbolic link with prime, alternating, twist-reduced diagram
with no bigons and no cycle of tangles. Let B and R denote its checkerboard surfaces. Let
Mp = D(S3\\B), and DR be the double of R in Mp as above. Then

guts(Mp\\DR) = Mg\\DR.

That is, in the annulus version of the JSJ decomposition of Mp\\DR, there are no I-bundle
or Seifert fibered solid torus components.
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900 A. CHAMPANERKAR, I. KOFMAN AND J. S. PURCELL

FIGURE 10 (colour online). Left: Squares making up an essential annulus. Right: The case when
there are only two squares. Note both can be isotoped to encircle the ideal vertex v shown.

Proof. The manifold Mp\\DR is obtained by gluing four copies of the checkerboard ideal
polyhedra of Definition 4.3, by gluing P! to P? by the identity on blue faces, i = 1,2, and
leaving red faces unglued.

If Mp\\DR does contain I-bundle or Seifert fibered solid torus components, then there must
be an essential annulus A in Mp\\DR disjoint from the parabolic locus. Suppose A is such an
annulus. Then A has boundary components on DR and interior disjoint from a neighborhood
of R. Put A into normal form with respect to the polyhedra P/ of Mp\\DR. Because A is
essential, it must intersect B in arcs running from one component of JA to the other, cutting
A into an even number of squares Sy, Sa, ..., Sa, alternating between P! and P?, for fixed i.

The square Sy is glued along some arc a3 in AN B to the square S7, and S5 is glued along
another arc az in AN B to the square S3. The squares S; and S3 lie in the same polyhedron
P/. Superimpose 955 on that polyhedron. Because S; and S5 are glued by the identity on B,
the arcs of all three squares coming from one component of A lie on the same red face of the
polyhedron. Similarly for the other component of 9A. The same argument applies to any three
consecutive squares, showing in general that one component of JA lies entirely in two identical
red faces of P! and P?, and these are glued by the identity on adjacent blue faces. The result
is shown in Figure 10 (right).

By hypothesis, we have no cycle of tangles in our diagram. Thus one of the T; in Figure 10
must be trivial or a part of a twist region. If trivial, then the square S; is not normal, which
is a contradiction. But because K has a diagram with no bigons, 7; cannot contain bigons, so
T; must be a single crossing. Note neither 7;_1 nor T;41 can be a single crossing (it could be
that T;—1 = T;41), else T; and this tangle would form a bigon. Thus 7; U T;_; is a tangle that
is non-trivial, and does not bound a portion of a twist region. If T;; is a distinct tangle, then
we have a cycle of tangles (possibly after performing this same move elsewhere to move single
crossings into larger tangles).

The only remaining possibility is that there are just two tangles, 77 and 75, and T} is a
single crossing, and T is a knotty tangle. But then S; and So can both be isotoped to encircle
the ideal vertex corresponding to the single crossing, as in Figure 10 (left). Then S; U S is a
boundary parallel annulus in Mp\\ DR, parallel to the double of the ideal vertex corresponding
to this single crossing. A boundary parallel annulus is not essential. ]

LEMMA 4.11. Let Kg be a hyperbolic link with prime, alternating, twist-reduced diagram
with no red bigons and no cycle of tangles, with checkerboard surfaces B and Rpg, and let F
be the Seifert fibered solid tori from Lemma 4.7. Finally, let Kgr be the new link obtained
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GEOMETRICALLY AND DIAGRAMMATICALLY MAXIMAL KNOTS 901

by replacing any adjacent blue bigons from the diagram of K with a single crossing, and let
Bpr and Rpr be the checkerboard surfaces of Kggr. Then

guts(D((S*\\Bg) — E)\\DRg) = guts(D(S*\\Bpr)\\DRpr) = D(5*\\Bsr)\\DRsr.
Thus
vol(D((S*\\Bg) — E)) = $vol(D(D(S*\\Bpr)\\DRBR)).

Proof. Because Kppr has no bigons, Lemma 4.10 implies the last equality:

guts(D(S*\\Bpr)\\DRgr) = D(5*\\Bpr)\\DRgx.

Hence it remains to show the first equality.

Recall that S3\\ Bg is obtained by gluing two checkerboard ideal polyhedra along their red
faces, leaving blue faces unglued. The Seifert fibered solid tori of E lie in those polyhedra in
blue twist regions, meeting the bigons of the twist region and the adjacent red faces, as on the
right of Figure 9.

When we double along the blue surface to construct D(S3\\Bg), the Seifert fibered solid
tori in E glue to give a Seifert fibered submanifold, with boundary in D(S\\Bgr) an essential
torus obtained by gluing two annuli A, where A is made up of squares bounding the fused
units in Figure 9. Thus (S*\\Br) — E consists of portions of the polyhedra that lie outside
of E. For each such solid torus, in each polyhedron these consist of regions bounding a single
bigon, and one region bounding the fused unit with the non-trivial tangle.

Note that each region consisting of a square encircling a single bigon is fibered. The bigon
itself is fibered, with fibers meeting each edge of the bigon in a single point and parallel to
the ideal vertex, which is part of the parabolic locus. Similarly, the square encircling the bigon
gives a fibered disk. Together, these two squares bound a fibered box, where fibers have one
endpoint on one red face, one endpoint on the other, and are parallel to the fibers of the bigon.

To obtain D((S3\\Bgr) — E)\\DRg, we take four polyhedra, and glue them in pairs by the
identity along their blue faces. Note that the fibered boxes at blue twist regions must belong
to the characteristic I-bundle of the cut manifold, so these twist regions cannot be part of
the guts of this manifold. Therefore, the guts is obtained by considering only the quadrilateral
bounding the non-trivial tangle. The corresponding polyhedron is equivalent to the polyhedron
obtained by replacing the blue twist region with a single bigon.

But now consider any remaining blue bigons in the diagram, including this, and including
blue bigons from twist regions that did not give rise to Seifert fibered solid tori in the previous
step. As before, a neighborhood of any such bigon and the parabolic locus is an I-bundle, and
is part of the characteristic /-bundle of the manifold. So if Y is a neighborhood of the union
of the parabolic locus and all the bigons in the polyhedra, then the guts of D((S*\\Bg) —
E)Y\\DRp := Ng is the guts of the closure of Np — Y, where the latter is given parabolic locus
cl(@Y — BNR)

As in the beginning of Section 5 of [21], this can be identified explicitly. If we replace the
bigons of each blue twist region by a single ideal vertex of the polyhedron, then the remaining
portions of the polyhedra will be identical. But this is exactly the polyhedron of the link with
no bigons Kgg. The desired result follows. ]

LEMMA 4.12. When K is a link with prime, alternating, twist-reduced diagram with no
bigons and no cycle of tangles, the doubles of manifolds Mg\\DR and Mr\\DB admit
isometric finite volume hyperbolic structures. In these structures, the surfaces coming from
DR and DB are totally geodesic and meet at angle 7/2. The manifolds are both obtained
by gluing eight isometric copies of a right-angled hyperbolic ideal polyhedron P, and this
polyhedron is equivalent to the checkerboard ideal polyhedron of K.
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902 A. CHAMPANERKAR, I. KOFMAN AND J. S. PURCELL

Proof. By Lemma 4.10, Mp\\DR is all guts, with no I-bundle or Seifert fibered pieces.
Thus when we double it, the resulting manifold admits a complete finite volume hyperbolic
structure, in which DR is a totally geodesic surface. The same argument applies to the double
of MrR\\DB.

Now we show that these two doubles are homeomorphic. Both are homeomorphic to eight
copies of the checkerboard polyhedron P coming from K, glued by identity maps on faces,
as follows. In particular, recall that MB\\DR = D(SS\\B)\\DR is obtained by taking four
copies of the polyhedron P, denoted by P}, PZ, Py, and P#, with red faces unglued, and blue
faces of P1 glued to those of P2 by the identity, for j = 1,2. When we double across DR, we
obtain four more polyhedra, P!, i,j = 1,2, with blue faces of P1 glued to blue faces of P2 by
the identity for each i = 1,2, and red faces of PZ glued to red faces of PZ by the 1dent1ty, for
1,7 = 1,2. To form the double of MR\\DB, we repeat the process, only cut and glue along red
first, then'along blue. Again we obtain eight copies of the checkerboard polyhedron, denoted
Q] and Q7, for i,j = 1,2, with Q} glued to Q? by the identity map on red faces, Q} glued to
Q? by the identity on red faces, and @} glued to @] by the identity on blue faces. This gluing
is summarized in the following diagram:

Pl blue P2 Ql red Q2
redi ired bluei 1blue

— blue 5 A red A

pr——the . p2 Q! @

Now build a homeomorphism by mapping by the identity between the polyhedra P and the
polyhedra @, rotating the diagram on the left to match that on the right. That is, map P} to

2 map P} to Q}, map P? to Q?, and map P? to Q}, for i = 1,2. These maps give the identity
on the interiors of the polyhedra, the identity on interiors of faces, and extend to identity maps
on edges between faces. Thus they give a homeomorphism of spaces.

Since D(Mr\\DB) and D(Mg\\DR) are finite volume hyperbolic manifolds, by Mostow—
Prasad rigidity [26, 27], the doubles are actually isometric. Thus DB and DR are totally
geodesic in each of them. Hence cutting along these totally geodesic surfaces yields eight copies
of P, each with totally geodesic red and blue faces.

Finally, since DR is geodesic when we double along DB, it must intersect DB at right angles.
Thus the surfaces meet everywhere at angle 7/2, as claimed. ]

THEOREM 4.13. Suppose K is a link with a prime, alternating, twist-reduced, diagram
with no cycle of tangles. Let K' be the link with diagram obtained from that of K by replacing
any adjacent red bigons with a single crossing, and by replacing any adjacent blue bigons with
a single crossing. Let P(K') denote the checkerboard polyhedron coming from K’ given an
ideal hyperbolic structure with all right angles. Then

vol(S® — K) > 2vol(P(K")).

Proof. Lemmas 4.7, 4.8, and 4.11 imply that when K admits a prime, alternating diagram
with no bigons and no cycle of tangles,

vol(S? — K) > vol(D(Mg\\DR)).

Lemma 4.12 further implies that vol(D(Mp\\DR)) = 8vol(P(K)). Hence vol(S* — K) >
2vol(P(K)).

If K contains bigons, let K and K denote the link with the blue and red bigons removed,
respectively, and let Kgr = K’ denote the link with both blue and red bigons removed. Let
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Bp and Rp denote the checkerboard surfaces of Kpg, let Bg and Rgr denote the checkerboard
surfaces of Kg, and let Bgr and Rgr denote the checkerboard surfaces of Kgg.
Lemma 4.7 implies that

vol(S? — K) > vol(D((S*\\Br) — ER)),
where Eg is a collection of Seifert fibered solid tori. By Lemma 4.11,
vol(D((S*\\Bg) — ER)) = 3vol(D(D(S*\\Bpr)\\DRpr)).-
By Lemma 4.12, vol(D(D(S*\\Bgr)\\DRpr)) = 8 vol(P(Kpg)). Thus
vol(S® — K) > 2vol(P(KpRr)). O

5. Geometrically maximal knots

In this section, we complete the proof of Theorem 1.4.

Since the number of crossings in a diagram of K is equal to the number of ideal vertices of
P(K) by item (1) of Definition 4.3, our goal is to bound the ratio of the volume of P(K) to
the number of vertices of P(K). We will do so using methods of Atkinson [4], which rely on
fundamental results of He [18] on the rigidity of circle patterns. In particular, we employ the
proof of Proposition 6.3 of [4], which obtains the volume per vertex bounds we desire, but for
a different class of polyhedra. We first set up notation.

If we lift the ideal polyhedron P := P(K) into H?, then the geodesic faces lift to lie on
geodesic planes. These correspond to Euclidean hemispheres, and each extends to give a circle
on C. For every such polyhedron, we obtain a finite collection of circles (or disks) on C meeting
at right angles in pairs, and meeting at ideal vertices in sets of four. This defines a finite disk
pattern D on C, with angle /2 between disks. Let G(D) be the graph with a vertex for each
disk and an edge between two vertices when the corresponding disks overlap on C. Edges of
G(D) are labeled by the angle at which the disks meet, which in our case is 7/2 for each edge.
Note all faces of G(D) in our case are quadrilaterals, since all vertices of P are 4-valent, hence
the disk pattern D is rigid [18].

Similarly, as described in Section 3, we can form an infinite polyhedron Py, corresponding
to a checkerboard polyhedron of the infinite weave W: view the diagram of W as squares with
vertices on the integer lattice, and for each square draw the Euclidean circle on C running
through its four vertices. Each such circle on C corresponds to a hemisphere in H>. Let Py,
be the infinite polyhedron obtained from H? by cutting out all half-spaces of H? bounded by
these hemispheres. (In Section 3, this polyhedron was called X 1.) By construction, faces meet
in pairs at right angles, and at ideal vertices in fours. We obtain a corresponding rigid disk
pattern D, as shown in Figure 5(a).

DEFINITION 5.1. Let D and D’ be disk patterns. Give G(D) and G(D’) the path metric in
which each edge has length 1. For disks d in D and d’ in D', we say (D,d) and (D’,d") agree
to generation n if the balls of radius n about vertices corresponding to d and d’ admit a graph
isomorphism, with labels on edges preserved.

For any disk d, we let S(d) be the geodesic hyperplane in H? whose boundary agrees with
that of d. That is, S(d) is the Euclidean hemisphere in H? with boundary on the boundary
of d. For a disk pattern coming from a right-angled ideal polyhedron, the planes S(d) form
the boundary faces of the polyhedron. In this case, the disk pattern D is said to be simply
connected, meaning the union of the disks form a simply connected region, and ideal, since it
corresponds to an ideal polyhedron.
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(a) (b)

=S 8

FIGURE 11 (colour online). (a) Disk pattern (D, d) and graph G(D). (b) Ideal polyhedron C(d).

If d is a disk in a disk pattern D, with intersecting neighboring disks dy,...,d,, in D, then
S(d) N S(d;) is a geodesic ; in H3. Assume that the boundary of d is disjoint from the point
at infinity. Then the geodesics 7; on S(d) bound an ideal polygon in H?, and we may take the
cone over this polygon to the point at infinity. Denote the ideal polyhedron obtained in this
manner by C(d) (see Figure 11).

The following lemma restates Lemma 6.2 of [4].

LEMMA 5.2 (Atkinson [4]). There exists a bounded sequence 0 < ¢, < b < 0o converging
to zero such that if D is a simply connected, ideal, rigid, finite disk pattern containing a disk
d so that (Dso,d~) and (D, d) agree to generation £, then

[vol(C(d)) — vol(C(dwo))| < €¢.

We now generalize Proposition 6.3 of [4] to classes of polyhedra that include the checkerboard
ideal polyhedra of interest in this paper. The proof of the following lemma is essentially
contained in [4], but we present it here for completeness.

LeEMMA 5.3. Let D, denote the infinite disk pattern coming from Py, as defined
above, with fixed disk do,. Let P, be a sequence of right-angled hyperbolic polyhedra with
corresponding disk patterns D,,. Suppose the following hold.

(1) If F} is the set of disks d in D,, such that (D,,d) agrees to generation ¢, but not to
generation ¢ + 1 with (Dso,dw), then

FTL n
lim M =1, and lim ‘Fe |

nooo u(Pp) Ay =

(2) For every positive integer k, let | f}| denote the number of faces of P, with k sides that
are not contained in Uy Fy* and do not meet the point at infinity. Then
k/, n
lim bl
n— oo ’U(Pn)
Under these hypotheses,
vol(Pn)  oct
im = .
n—oo v(P,) 2

Proof. First, let f;' be a face with % sides that is not contained in U,F}*, and which does
not meet the point at infinity. Then vol(C(f;?)) has volume at most k times the maximum
value of the Lobachevsky function A, which is A(7/6) [33, Chapter 7]. Let E™ denote the sum
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of the actual volumes of all the cones over the faces f[’, for every integer k. Then we have
E™ < ZZkA(W/6) = Zk\fﬁA(ﬂ/G).
E fp k

For any face f in F}, let 67 (f) be a positive number such that vol(C(f)) = voet/2 £ 67 (f).
Then

vol(P) =3 3 (“‘;“ 07 (f)) + B".

¢ feFp

Hence

vol(P,) = ”‘;t +5°5° @op) + B

¢ ferp

U
¢
We divide each term by v(P,) and take the limit. For the first term, we obtain

hm |Ug Fén| Voct — Voct

n=oo v(P,) 2 2

By Lemma 5.2, there are positive numbers e, such that 6} (f) < €, so the second term becomes

e gerp (FGGUN S, |FP e

lim < lim =——.

n—oo ’U(Pn) n— oo ’U(Pn)

This can be seen to be zero, as follows. Fix any € > 0. Because lim;_ ., ¢, = 0, there is L
sufficiently large that ¢, < ¢/3, for £ > L. Then Zngl €¢ is a finite number, say M. By item (1)

in the statement of this lemma, there exists N such that if n > N, then max,<y, |Fj'|/v(Py) <
e/(3M - L) and | Up F}'|/v(P,) < (1 +¢). Then for n > N,

D0 [F7 e _ 25:1 |E7 e n o [F7 e < el
v(Pp) v(Py) v(Py) 3M - L

Hence the limit of the second term is zero.
Finally, the third term gives us

M+(1+E)§<E.

B S HEAG/6)

li < =0.
ns0 v(Py) o(Py)
Therefore, lim,, o, vol(P,,)/v(Pp) = Voct /2. |

We can now prove Theorem 1.4, which we recall from the introduction.

THEOREM (Theorem 1.4). Let K,, be any sequence of hyperbolic alternating link diagrams
that contain no cycle of tangles, such that

(1) there are subgraphs G, C G(K,,) that form a Fglner sequence for G(W), and
(2) lim, o |Gpl/c(K,) = 1.

Then K,, is geometrically maximal: lim,, o (vol(K,,)/c(K})) = Voct-

Proof. 'We may assume that K, are prime and twist-reduced diagrams. Any hyperbolic link
is prime. If a sequence K, satisfies the other conditions above, then the twist-reduced diagrams
K,, also satisfy these conditions because twist reduction does not change crossing number, and
only changes the diagram in G(K,,) — G,,.

We first consider the case that K,, contains no bigons. Because K, is prime, alternating, has
no bigons and no cycle of tangles, Theorem 4.13 implies that vol(S® — K,,) > 2vol(P(K,,)).
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FIGURE 12 (colour online). Balls B(v,r) for r = 1,2, 3 in the square lattice. The vertices of
OB(v,r) are shown in bold.

The crossing number of K, is equal to the number of vertices of P(K,), so dividing by
crossing number gives

vol($3 — K,,) _ _vol(P(K,))
() 7 (P(E)

The disk pattern graph G(D,,) associated with P(K,) is the dual of G(K,). Since G(W)
is isomorphic to its own dual, to simplify notation we may assume G,, C G(D,,). We will also
assume that the polygon enclosed by G, is simply connected, otherwise GG,, can be modified by
removing cutsets without affecting the required limits. Pick a point in G(D,,) which is outside
G, to send to infinity. We want to apply Lemma 5.3.

For condition (2) of Lemma 5.3, by counting vertices we obtain ), k[f7'| < 4|G(K,) — Gy|.
The factor 4 appears because every vertex belongs to four faces, so it will be counted at
most four times in the sum. Condition (2) now follows from |G(K,,)| = v(P(K,)) = ¢(K,) and
limy, oo (|Gn|/c(Ky)) = 1.

We now show that condition (1) of Lemma 5.3 is also satisfied. The sets F}’ consist of disks
d such that (D,,d) agrees to generation ¢, but not to generation ¢+ 1 with (Dso,ds). Let
d € F and let v be the vertex in G,, corresponding to d. Let B(v,{) C G,, denote the ball
centered at v of radius ¢ in the path metric on G,,. Then d € F}* means that B(v,¢) C Gy, but
B(v,£+1) ¢ G,. Hence, the distance from v to dG,, equals ¢, so that v € OB(x,¢) for some
x € 0Gy,. Thus, F}' C Uzeaa, 0B(x, L).

Since G,, C G(W) which is the square lattice, |0B(z, )| = 4¢ for any vertex x € G(W), see
Figure 12. Hence, |F}’| < 4¢|0G,,|. Thus, we obtain one part of condition (1):

, 7 . A]0G,| 0G| |Gyl
PR S o) G el

The fact that G,, C G(W) also implies that every vertex in G,, — OG,, corresponds to a disk in
F} for some /£, and no vertex in 9G,, corresponds to a disk in any of the F'. Hence, | U, F}'| =
|Gy, — 0G| Now, lim, oo (|0G,]/|Gr]) = 0 and lim,, o0 (|G |/c(K})) = 1 imply the second
part of condition (1):

| Ug By |G — 0G| _

Iim ———— = 1i 1.
noe o(P(K,)) — nose c(Koy)
Thus by Lemma 5.3,
. vol(S83 - K,) ) vol(P(K,))
lim —= " > im 2y,
oo oK) oneeel o(P(Ky)

Since equation (1) tells us that vol(S3 — K,,)/c(K,,) < voct, the above limit must equal vocs.
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Finally, if K, contains bigons, let K/, denote the link with both blue and red bigons removed.
Theorem 4.13 implies that vol(S3 — K,,) > 2vol(P(K})).

Now, since all bigons of K,, must be in G(K,,) — G, the above proof implies

3 _ ’
i YOUS" = K)o VOUPEL))

n—oo  c(Kp) n—oo v(P(K7}))

Again by equation (1), this limit must also equal vot. O
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