Date: November 23, 2016
Justify answers and show all work for full credit.

NAME:

\qquad

Problem 1. Suppose x and y satisfy $4 \sqrt{x}+x y^{3}-2=x^{2}-6 y$. Find $\frac{d y}{d x}$ at the point $(4,1)$.

Problem 2. Find the derivatives $\frac{d y}{d x}$.
(a) $y=\ln \left(7 x^{3}-9 x-3\right)$
(b) $y=e^{(-4 x+3)}+\frac{9}{x}-3$
(c) $e^{6 y}+\ln (y)=\frac{5}{\sqrt{x}}+x$

Problem 3. Evaluate
(a) $\int 3 x^{4}+\frac{2}{x^{6}}+\frac{4}{x}-10 d x$
(b) $\int 4 x^{3 / 5}-3 e^{7 x}-\sqrt[3]{x}+\frac{13}{x^{4}} d x$
(c) $\int x^{4} \sqrt{2 x^{5}+3} d x$
(d) $\int \frac{3 x^{8}}{x^{9}-2} d x$

Problem 4. Some kids rolling a snowball to make a snowman can add $80 \mathrm{~cm}^{3} / \mathrm{min}$ of snow to the ball. How fast is the radius of the snowball increasing when the radius is 10 cm ? (For a sphere, $V=\frac{4}{3} \pi r^{3}$.)

Problem 5. The wind blows a kite 80 ft above the ground at $10 \mathrm{ft} / \mathrm{sec}$ parallel to the ground. How fast must the string be let out when the string is 100 ft long?

Problem 6. Suppose a bond that now costs $\$ 2,000$ will return $\$ 5,000$ in 30 years.
(a) If compounded continuously, what is the interest per year (APR) on the bond?
(b) How much will the bond be worth after 10 years?

Problem 7. To produce x flerds, the marginal cost in dollars is $\overline{M C}=4 x+30$, and the marginal revenue is $\overline{M R}=110$. The fixed cost for making flerds is $\$ 1,000$.
(a) Find the marginal profit function $\overline{M P}(x)$, where x is the number of flerds.
(b) Find the profit function $P(x)$ for flerds.
(c) After how many flerds, if ever, will selling flerds be profitable? Explain.

