Date: December 4, 2013

Professor Ilya Kofman

Justify answers and show all work for full credit.

NAME: _____

Problem 1. Evaluate

(a)
$$\int \left(\frac{4}{t^2} + 3e^{9t} - \frac{2}{t}\right) dt$$

(b)
$$\int \left(-5x^3 + 7\sqrt{x} + \frac{1}{\sqrt[3]{x}} \right) dx$$

(c)
$$\int \frac{x^4}{\sqrt{3x^5+6}} \, dx$$

Problem 2. If $\int f(x) \, dx = 4x^3 - 2x^{3/2} + 3e^x + C$, find f(x).

Problem 3. Evaluate

(a)
$$\int_{-10}^{10} x^5 dx$$

(b)
$$\int_{-2}^{2} (9x^2 - 4x + 3) dx$$

(c)
$$\int_{1}^{2} (2t-3)^{10} dt$$

(d)
$$\int_0^1 x^2 e^{x^3} dx$$

Problem 4. Express the shaded signed area under the given curve as an integral. Then evaluate the integral to find the signed shaded area under the curve.

Bonus: Find the total (unsigned) shaded area bounded by the curve and the *x*-axis.

Problem 5. Find the total income over the next 5 years from a continuous income stream with annual flow rate $f(t) = 150 e^{-0.2t}$.

Problem 6. The rate of increase in maintenance costs for a building is $M'(t) = \frac{1000}{\sqrt{t+7}}$, where *M* is in dollars and *t* is in years. Find the total maintenance cost for years 2 through 9, i.e. for $2 \le t \le 9$.

Problem 7. To produce x fenleys, the marginal cost in dollars is $\overline{MC} = 5x + 20$, and the marginal revenue is $\overline{MR} = 150 - 3x$. The fixed cost is \$2500. (a) Find the marginal profit function $\overline{MP}(x)$, where x is the number of fenleys.

(b) Find the profit function P(x) for fenleys.

(c) Find the profit when 100 fenleys are sold.